Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jebur, Q.H." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Hyperelastic modelling of rubber with multi-walled carbon nanotubes subjected to tensile loading
Autorzy:
Jweeg, M.J.
Alazawi, D.A.
Jebur, Q.H.
Al-Waily, M.
Yasin, N.J.
Powiązania:
https://bibliotekanauki.pl/articles/24200544.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rubber nanocomposite materials
rubber characterisation
rubber nanocomposite
strain energy
hyperelastic materials model
rubber modelling
gumowe materiały nanokompozytowe
charakterystyka gumy
nanokompozyt gumowy
energia odkształcenia
model materiałów hiperelastycznych
modelowanie gumy
Opis:
Purpose: This study thoroughly examined the application of inverse FE modelling and indentation tensile tests to identify nanotubes' rubber material properties. indentation tensile tests to identify nanotubes' rubber material properties. Design/methodology/approach: Carbon nanotubes with various percentages of multi-walled carbon nanotubes exposed to high tensile stress were used to enhance the mechanical qualities of N.R. rubber. Findings: In this work, carbon nanotubes have been added to natural rubber. By using a solvent casting technique, toluene was used to make nanocomposites. 0.2%, 0.4%, 0.6%, 0.8%, and 1%. In this article, rubber and multi-walled carbon nanotubes interact in practical ways. Mechanical features of carbon nanotubes in NR have been researched. The results will lead to rubber products with improved mechanical qualities compared to present nanocomposite rubber containing various percentages of multi-walled carbon nanotubes exposed to large tensile test loading. The relative fitness error for significant stresses is reasonable with a second or third-order deformation model in numerical results. Research limitations/implications: Non-linear finite element analysis is widely used to optimise complicated elastomeric components' design and reliability studies. However, accurate numerical results cannot be achieved without using rubber or rubber nanocomposite materials with reliable strain energy functions. Practical implications: The indentation tensile tests of rubber samples have been simulated and confirmed using a parametric FE model. An inverse materials parameter identification algorithm was used to calculate the hyperelastic material properties of rubber samples evaluated in uniaxial tensile. Using ABAQUS FE software, material parameters and force-displacement data may be automatically updated and extracted. Originality/value: The numerical data for the inverse method of material property prediction has been successfully established by developing simulation spaces for various material characteristics. The force-displacement curve can be represented using technical methods. The results demonstrate that the inverse FE modelling process might be simplified by using these curve fitting parameters and plot equations to build a mathematical link between curve coefficients and material properties. The first, second, and third-order deformation models were tested using FE simulations for the tensile test.
Źródło:
Archives of Materials Science and Engineering; 2022, 114, 2; 69--85
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hyperelastic models for the description and simulation of rubber subjected to large tensile loading
Autorzy:
Jebur, Q.H.
Jweeg, M.J.
Al-Waily, M.
Ahmad, H.Y.
Resan, K.K.
Powiązania:
https://bibliotekanauki.pl/articles/2175788.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rubber
carbon black
filler
hyperelastic models
Abaqus
FEM
guma
sadza
wypełniacz
modele hiperelastyczne
MES
Opis:
Purpose: Rubber is widely used in tires, mechanical parts, and user goods where elasticity is necessary. Some essential features persist unsolved, primarily if they function in excessive mechanical properties. It is required to study elastomeric Rubber's performance, which is operational in high-level dynamic pressure and high tensile strength. These elastomeric aims to increase stress breaking and preserve highly pressurised tensile strength. Design/methodology/approach: The effects of carbon black polymer matrix on the tensile feature of different Rubber have been numerically investigated in this research. Rubber's material characteristics properties were measured using three different percentages (80%, 90%and 100%) of carbon black filler parts per Hundreds Rubber (pphr). Findings: This study found that the tensile strength and elongation are strengthened as the carbon black filler proportion increases by 30%. Practical implications: This research study experimental tests for Rubber within four hyperelastic models: Ogden's Model, Mooney-Rivlin Model, Neo Hooke Model, Arruda- Boyce Model obtain the parameters for the simulation of the material response using the finite element method (FEM) for comparison purposes. These four models have been extensively used in research within Rubber. The hyperelastic models have been utilised to predict the tensile test curves—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model. Numerical Ogden model results have shown that the relative fitness error was the case with large strains are from 1% to 2.04%. Originality/value: In contrast, other models estimate parameters with fitting errors from 2.3% to 49.45%. The four hyperelastic models were tensile test simulations conducted to verify the efficacy of the tensile test. The results show that experimental data for the uniaxial test hyperelastic behaviour can be regenerated effectively as experiments. Ultimately, it was found that Ogden's Model demonstrates better alignment with the test data than other models.
Źródło:
Archives of Materials Science and Engineering; 2021, 108, 2; 75--85
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies