- Tytuł:
- Star-Critical Ramsey Numbers for Cycles versus K4
- Autorzy:
-
Jayawardene, Chula J.
Narváez, David
Radziszowski, Stanisław P. - Powiązania:
- https://bibliotekanauki.pl/articles/32083859.pdf
- Data publikacji:
- 2021-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Ramsey theory
star-critical Ramsey numbers - Opis:
- Given three graphs $G, H$ and $K$ we write $K → (G, H)$, if in any red/blue coloring of the edges of $K$ there exists a red copy of $G$ or a blue copy of $H$. The Ramsey number $r(G, H)$ is defined as the smallest natural number $n$ such that $K_n → (G, H)$ and the star-critical Ramsey number $r_\ast(G, H)$ is defined as the smallest positive integer $k$ such that \(K_{n−1} \sqcup K_{1,k} → (G, H)\), where $n$ is the Ramsey number $r(G, H)$. When $n ≥ 3$, we show that $r_\ast(C_n, K_4)=2n$ except for $r_\ast(C_3, K_4)=8$ and $r_\ast(C_4, K_4) = 9$. We also characterize all Ramsey critical $r(C_n, K_4)$ graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 381-390
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki