Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jastrząb, R." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Aminy biogenne w aspekcie ich roli w organizmach żywych
Biogenic amines in their role in living systems
Autorzy:
Jastrząb, R.
Tylkowski, B.
Powiązania:
https://bibliotekanauki.pl/articles/171885.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
poliaminy
aminy biogenne
związki kompleksowe
nowotwory
polyamines
biogenic amines
coordination compounds
tumors
Opis:
Although polyamines (PA) belong to relatively simple aliphatic substances, their role in life processes of animals and plants is of key importance [1–5]. The group of the most important amines, called biogenic ones includes: Spermine (Spm): H2N(CH2)3NH(CH2)4NH(CH2)3NH2 Spermidine (Spd): H2N(CH2)3NH(CH2)4NH2 Putrescine (Put): H2N(CH2)4NH2. Of secondary importance are homologues of biogenic amines, occurring in lower contents in living organisms [2, 6–8]: 1,3-diaminopropan: H2N(CH2)3NH2 Cadaverine: H2N(CH2)5NH2 Homospermidine: H2N(CH2)4NH(CH2)4NH2 Norspermine (3,3,3-tet): H2N(CH2)3NH(CH2)3NH(CH2)3NH2 Thermospermine: H2N(CH2)3NH(CH2)4NH(CH2)4NH2 Caldopentamine: H2N(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH2. The first polyamine discovered in a living organism was tetramine, a spermine crystallised out of sperm in 1678 by Van Leewenkeuk [9]. Putrescine was discovered in the end of the 19th century in microbes and then triamine: spermidine was discovered in the beginning of the 20th century [2]. Later studies have shown that in animal cells spermidine and spermine occur at elevated levels, while in prokaryotes spermidine and putrescine contents are dominant. Putrescine, spermidine, 1,3-diaminopropan, homospermidine, norspermidine, and norspermine have been found in many gramnegative bacteria and algae [7, 10, 11]. Total concentration of PA in living organisms is on the order of millimols, however, the concentration of free polyamines is much lower. A low level of free amines follows from the fact that they are involved in noncovalent interactions with biomolecules occurring in living organisms such as nucleic acids, proteins, or phospholipids. High concentrations of non-bonded polyamines have been detected first of all in young molecules in the process of growth, in particular in rapidly proliferating cancer cells [6, 12]. Elevated levels of free polyamines have been observed, e.g. in breast, colon, lung, prostate, and skin tumours, accompanied by changed levels of enzymes responsible for biosynthesis and catabolism of polyamines. Because of the increased level of free polyamines and a tendency of their interaction with nucleic acids and other bioligands, these compounds have become objects of intense study [1, 13–19]. There is no doubt that the regulation of biosynthesis of polyamines and catabolism is one of the most important pathways in the search strategy for chemoprevention and chemotherapeutic drugs [14, 15, 20–36]. The present state of knowledge of these processes, their significance in biological systems, and their application in medicine are presented in subsequent sections of this chapter.
Źródło:
Wiadomości Chemiczne; 2016, 70, 1-2; 57-79
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preparatyka materiałów SERS-aktywnych
Autorzy:
Nowak, M.
Jastrząb, R.
Witkowska, K.
Marciniak, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/274473.pdf
Data publikacji:
2015
Wydawca:
Roble
Tematy:
preparatyka nanocząstek
powierzchniowo wzmocniona spektroskopia Ramana
SERS
nanoparticles preparation
surface enhanced Raman spectroscopy
Opis:
W artykule opisano opracowane metody preparatyki różnego typu materiałów zawierających nanocząstki srebra na potrzeby Wzmocnionej Powierzchniowo Spektroskopii Ramana (SERS). W pracy przedstawiono preparatykę koloidów srebra stabilizowanych za pomocą PVP (poliwinylopirolidon) oraz preparatykę koloidu srebra umieszczonego w materiale polimerowym.
Źródło:
LAB Laboratoria, Aparatura, Badania; 2015, 20, 4; 41-42
1427-5619
Pojawia się w:
LAB Laboratoria, Aparatura, Badania
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanomateriały SERS-aktywne wykorzystywane w badaniach markerów nowotworowych
Autorzy:
Jastrząb, R.
Nowak, M.
Skrobańska, M.
Zabiszak, M.
Runka, T.
Powiązania:
https://bibliotekanauki.pl/articles/274132.pdf
Data publikacji:
2015
Wydawca:
Roble
Tematy:
marker nowotworowy
nanomateriały
powierzchniowo wzmocniona spektroskopia Ramana
SERS
tumor markers
nanomaterials
surface enhanced Raman spectroscopy
Opis:
W artykule zaprezentowano metody otrzymywania nanomateriałów wykorzystywanych we wzmocnionej powierzchniowo spektroskopii Ramana (SERS). Scharakteryzowano powierzchnie zsyntetyzowanych materiałów oraz ich efektywność we wzmacnianiu sygnału Ramana substancji referencyjnej, rodaminy 6G. Przedstawiono dotychczasowe dane bibliograficzne dotyczące zastosowania wzmocnionej spektroskopii Ramana do detekcji związków będących markerami chorób nowotworowych oraz substancji, które potencjalnie mogą służyć jako markery w stanach chorobowych.
Źródło:
LAB Laboratoria, Aparatura, Badania; 2015, 20, 4; 36-40
1427-5619
Pojawia się w:
LAB Laboratoria, Aparatura, Badania
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie nanostruktur platyny, palladu i srebra we wzmocnionej powierzchniowo spektroskopii Ramana
Autorzy:
Bińczyk, M.
Nowak, M.
Marciniak, Ł.
Runka, T.
Jastrząb, R.
Powiązania:
https://bibliotekanauki.pl/articles/273564.pdf
Data publikacji:
2016
Wydawca:
Roble
Tematy:
nanostruktura platyny
nanostrukrura palladu
nanostruktura srebra
spektroskopia Ramana
nanostructure of platinum
nanostructure of palladium
nanostructure of silver
Raman spectroscopy
Opis:
Zgodnie z wiedzą literaturową w nanostrukturach platyny oraz palladu możliwe jest wzbudzanie plazmonów powierzchniowych falami z zakresu widzialnego, a zatem możliwe jest ich zastosowanie we wzmocnionej powierzchniowo spektroskopii Ramana (SERS). Ponadto oba metale wykazują bardzo dobre właściwości katalityczne, dzięki czemu potencjalnie umożliwiają wzmocnienie sygnału ramanowskiego pochodzącego od produktów reakcji dla których są katalizatorami. W pracy przedstawiono i porównano uzyskane wzmocnienie sygnału ramanowskiego pochodzącego od rodaminy 6G osadzonej na nanostrukturach platyny, palladu oraz srebra, które zostały wytworzone metodą osadzania metalu z roztworu na miedzianym podłożu.
Źródło:
LAB Laboratoria, Aparatura, Badania; 2016, 21, 5; 8-11
1427-5619
Pojawia się w:
LAB Laboratoria, Aparatura, Badania
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies