- Tytuł:
- Regular elements and Greens relations in Menger algebras of terms
- Autorzy:
-
Denecke, Klaus
Jampachon, Prakit - Powiązania:
- https://bibliotekanauki.pl/articles/729175.pdf
- Data publikacji:
- 2006
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
term
superposition of terms
Menger algebra
regular element
Green's relations - Opis:
- Defining an (n+1)-ary superposition operation $S^n$ on the set $W_{τ}(X_n)$ of all n-ary terms of type τ, one obtains an algebra $n-clone τ := (W_{τ}(X_n); S^n, x_1, ..., x_n)$ of type (n+1,0,...,0). The algebra n-clone τ is free in the variety of all Menger algebras ([9]). Using the operation $S^n$ there are different possibilities to define binary associative operations on the set $W_{τ}(X_n)$ and on the cartesian power $W_{τ}(X_n)^n$. In this paper we study idempotent and regular elements as well as Green's relations in semigroups of terms with these binary associative operations as fundamental operations.
- Źródło:
-
Discussiones Mathematicae - General Algebra and Applications; 2006, 26, 1; 85-109
1509-9415 - Pojawia się w:
- Discussiones Mathematicae - General Algebra and Applications
- Dostawca treści:
- Biblioteka Nauki