- Tytuł:
-
Ann modelling for the analysis of the green moulding sands properties
Analiza właściwości syntetycznych mas formierskich z zastosowaniem sztucznych sieci neuronowych - Autorzy:
-
Jakubski, J.
Malinowski, P.
Dobosz, S. M.
Major-Gabryś, K. - Powiązania:
- https://bibliotekanauki.pl/articles/356980.pdf
- Data publikacji:
- 2013
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
data mining
artificial neural networks
green moulding sands
sztuczne sieci neuronowe
syntetyczne masy formierskie - Opis:
-
Application of modern technological solutions, as well as the economic and ecological solutions, is for foundries one of the main aspects of the competitiveness on the market for castings. IT solutions can significantly support technological processes. This article presents neural networks with different structures that have been used to determine the moisture content of the moulding sand based on the moulding sand selected properties research results. Neural networks were built using Matlab software. Moulding sand properties chosen for quality control processes were selected based on wide previous results.
For the proposed moulding sand properties, neural networks can be a useful tool for predicting moisture content. The structure of artificial neural network do not have a significant influence on the obtained results. In subsequent studies on the use of neural networks as an application to support the green moulding sand rebonding process, it must be determined how factors such as environmental humidity and moulding sand temperature will affect the accuracy of data obtained with the use of artificial neural networks.
Zastosowanie nowoczesnych rozwiązań technologicznych, a także ekonomicznych i ekologicznych stanowi dla odlewni jeden z głównych aspektów konkurencyjności na rynku produktów odlewów. Doskonałym wsparciem dla procesów technologicznych są rozwiązania informatyczne. W artykule zaprezentowano sieci neuronowych o różnej strukturze, które zostały użyte do określania wilgotności masy formierskiej na podstawie wyników badania wybranych właściwości masy. Sieci neuronowe zbudowano z wykorzystaniem oprogramowania Matlab. Właściwości mas wybrane do procesów sterowania jakością zostały dobrane w oparciu o wcześniejsze wyniki badań. Dla zaproponowanych właściwości syntetycznych mas formierskich sztuczne sieci neuronowe mogą być użytecznym narzędziem do przewidywania wilgotności masy. Ilość warstw ukrytych w strukturze sieci nie ma wpływu na otrzymywane rezultaty. W kolejnych badaniach nad wykorzystaniem sieci neuronowych jako aplikacji wspierającej procesy odświeżania syntetycznych mas formierskich, należy okreslić, w jaki sposób czynniki takie jak wilgotność otoczenia, czy temperatura masy wpłyną na dokładność danych uzyskanych z wykorzystaniem sztucznych sieci neuronowych. - Źródło:
-
Archives of Metallurgy and Materials; 2013, 58, 3; 961-963
1733-3490 - Pojawia się w:
- Archives of Metallurgy and Materials
- Dostawca treści:
- Biblioteka Nauki