Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Isermann, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Cognition-based self-optimisation of an automotive rear-axle-drive production process
Autorzy:
Schmitt, R.
Niggemann, C.
Isermann, M.
Laass, M.
Matuschek, N.
Powiązania:
https://bibliotekanauki.pl/articles/99553.pdf
Data publikacji:
2010
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
Agent-Based Systems
cognition based
self-optimization
rear-axle-drive
Opis:
The production of automotive rear-axle drives is a complex process. This is due to many involved process steps, factors and interdependencies between processes, materials, means of production and individuals acting in this environment. In general their effect on product variations is not fully comprehended. Hence, a holistic analytical model is only possible in parts of the production. In this paper a modular approach is presented to make the production more flexible and enable it to react faster on product variations. This is achieved by a Cognitive Production System (CPS), which is based on accumulating, storing and processing of process knowledge so that it can be applied to similar cases. Through the combination and interaction of Cognitive Tolerance Matching (CTM) and Agent-based Systems the performance of the CPS is enhanced. The work discusses the set-up of such a CPS for the production of automotive rear-axle-drives with the focus on the failure state agent.
Źródło:
Journal of Machine Engineering; 2010, 10, 3; 68-77
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cognitive Optimization of an Automotive Rear-Axle Drive Production Process
Autorzy:
Schmitt, R.
Isermann, M.
Wagels, C.
Matuschek, N.
Powiązania:
https://bibliotekanauki.pl/articles/971254.pdf
Data publikacji:
2009
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
cognitive tolerance
self-optimization
rear-axle-drive
Opis:
While optimizing tolerances in tolerance chains only single characteristics or objectives of single process steps are considered, there is no information exchange across all processes. Interdependencies between processes, materials, means of production and individuals acting in this environment as well as their effect on product variations are usually not fully understood. In order to face a dynamisation of process specification, interdependencies have to be identified and integrated in future production. The holistic consideration of the process chain focused on the allocation of tolerances allows detection of correlations and interdependencies in the production process itself. By this, process chain information is traced back to conduct the right optimizations at the right place in the process chain. But therefore intelligent controlling mechanisms are needed to analyze and optimize even complex production systems with multi-level interdependencies. Such a cognitive system is able to form the core of self-optimizing production system. Using this cognitive system, the production process of an automotive rear-axle drive is optimized in order to minimize disturbances created by structure-borne sound emissions. Therefore several cognitive technologies have been evaluated to fulfil specific tasks in process optimization.
Źródło:
Journal of Machine Engineering; 2009, 9, 4; 71-80
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Production Optimization by Cognitive Technologies
Autorzy:
Schmitt, R.
Wagels, C.
Isermann, M.
Powiązania:
https://bibliotekanauki.pl/articles/971238.pdf
Data publikacji:
2009
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
cognitive tolerance matching
self-optimization
SOAR
cognition
intelligent production systems
Opis:
Today, value chains are considered fractionally and on the basis of simplified model assumptions. Interactions between processes, materials, means of production and individuals acting in this environment as well as the effect of changes on the product usually are not known exhaustively. In order to take corrective actions towards these deficits, self-optimizing production system technologies can be used. They provide systems that emulate the "human" ability of reaching a decision with technical architectures. The goal of these approaches is to steadily analyze and evaluate the actual status in technological as well as in organisational areas and conduct a system adaptation to alternating objectives. Central questioning in this field of research is how to survey production data in order to detect correlations of production parameters and their influence on product parameters, how to derive decisions from this knowledge and how to learn from the consequences. Application technologies capable of taking on these tasks of self-optimization to emulate intelligent behaviour are analysed. The aim is to identify the competencies of these technologies, in order to build a cognitive system architecture based on applications especially suited for each task that has to be fulfilled to emulate cognitive human decision making processes.
Źródło:
Journal of Machine Engineering; 2009, 9, 1; 78-90
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies