- Tytuł:
- Development of predictive force models for oblique cutting of mild carbon steel (CS1030) incorporating tool flank wear
- Autorzy:
- Ipilakyaa, Tertsegha
- Powiązania:
- https://bibliotekanauki.pl/articles/95275.pdf
- Data publikacji:
- 2019
- Wydawca:
- Politechnika Koszalińska. Wydawnictwo Uczelniane
- Tematy:
-
oblique cutting
tool flank wear
machining
cutting force model
skrawanie skośne
zużycie ostrza skrawającego
obróbka skrawaniem
model siły skrawania - Opis:
- Predictive force models for oblique metal cutting incorporating tool flank wear was carried out using a CNC lathe machine to turn mild carbon steel CS1030. The developed models are based on the fundamental mechanics of orthogonal cutting process, in which inclination angle is 0°. Workpieces were Cylindrical with wall thickness of 3mm and diameter of 100 mm. Cut thickness levels were 0.1, 0.17, 0.24 and 0.31 mm; cutting speeds were 100, 150 and 200 m/min; tool rake angle levels were -5, 0 and 5°. wearland sizes were selected as 0, 0.2, 0.4, 0.6 mm, where wearland size “0 mm” represents sharp tool. Results of the study indicate that tool flank wear has significant effect on oblique cutting forces. The oblique cutting forces were found to increase linearly with tool flank wear due to rubbing or ploughing forces in the wearland. The results also show that, the measured experimental oblique forces (power force, Fcm thrust force Ftm and rubbing force Frm) agreed with the predicted (power force Fc thrust force Ft, and rubbing force Fr) values under the corresponding cutting conditions. It is evident from the plots that the models give an excellent prediction of the cutting forces during oblique cutting.
- Źródło:
-
Journal of Mechanical and Energy Engineering; 2019, 3, 4; 295-299
2544-0780
2544-1671 - Pojawia się w:
- Journal of Mechanical and Energy Engineering
- Dostawca treści:
- Biblioteka Nauki