- Tytuł:
- Synthesis of silver nanoparticles by aqueous extract of Zingiber officinale and their antibacterial activities against selected species
- Autorzy:
-
Hussain, Zawar
Jahangeer, Muhammad
ur Rahman, Shafiq
Ihsan, Tamanna
Sarwar, Abid
Ullah, Najeeb
Aziz, Tariq
Alharbi, Metab
Alshammari, Abdulrahman
Alasmari, Abdullah F. - Powiązania:
- https://bibliotekanauki.pl/articles/27315653.pdf
- Data publikacji:
- 2023
- Wydawca:
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
- Tematy:
-
Nanotechnology
Antibacterial activity
Silver-nanoparticles
green synthesis
Ginger - Opis:
- Silver nanoparticles have special plasmonic and antibacterial characteristics that make them efficient in a variety of commercial medical applications. According to recent research, chemically synthesized silver nanoparticles are harmful even in low concentrations. It was crucial to identify appropriate synthesis methods that may have low costs and be nontoxic to the environment. Zingiber officinale (ginger) extracts used to prepare silver nanoparticles were inexpensive and environmentally friendly, and the best physicochemical characteristics were analyzed. Silver nanoparticles were characterized by using UV-visible spectroscopy, Scanning electron microscopy (SEM), and X-ray diffraction (XRD). The surface Plasmon resonance peak at 425 nm was observed using UV-Visible spectroscopy. Scanning electron microscopy observed that the nanoparticles were spherical and ranged in size from 5 to 35 nm. The XRD pattern values of 2θ: 38.2° , 46.3° , and 64.58° are used to determine the planes (111), (200), and (220). The silver nanoparticle’s existence was verified by the face-centered cubic (FCC). Silver nanoparticles were found to have antibacterial efficacy against gram-positive Staphylococcus and gram-negative bacteria such as Pseudomonas aeruginosa, Klebsiella Aerogenes, Salmonella, Staphylococcus and Escherichia coli. The antibacterial activity of silver nanoparticles was observed using the agar well diffusion (AWD) method at three different concentrations (100 μg/ ml, 75 μg/ml, and 50 μg/ml). The zone of inhibition measured against the bacterial strains pseudomonas Aeruginosa, Klebsiella aerogenes, Escherichia coli, Salmonella and Staphylococcus which were (18.4±1.25 mm, 16.9±0.74 mm, 14.8±1.25 mm), (16.8±0.96 mm, 14.6±0.76 mm, 14.0±1.15 mm), (19.7±0.76 mm, 18.2±0.66 mm, 15.4±1.15 mm), (16.6±0.67 mm, 14.2±0.23 mm, 12.8±0.78 mm) and (12±0.68 mm, 10±0.20 mm, 08±0.15 mm). These nanoparticles’ potent antibacterial properties may enable them to be employed as nanomedicines for a variety of gramnegative bacterial illness treatments.
- Źródło:
-
Polish Journal of Chemical Technology; 2023, 25, 3; 23--30
1509-8117
1899-4741 - Pojawia się w:
- Polish Journal of Chemical Technology
- Dostawca treści:
- Biblioteka Nauki