Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hemmouche, Larbi" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Enhancement in Bearing Fault Classification Parameters Using Gaussian Mixture Models and Mel Frequency Cepstral Coefficients Features
Autorzy:
Atmani, Youcef
Rechak, Said
Mesloub, Ammar
Hemmouche, Larbi
Powiązania:
https://bibliotekanauki.pl/articles/177335.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
bearing faults
Gaussian mixture models
Mel frequency cepstral coefficients
feature extraction
diagnosis
Opis:
Last decades, rolling bearing faults assessment and their evolution with time have been receiving much interest due to their crucial role as part of the Conditional Based Maintenance (CBM) of rotating machinery. This paper investigates bearing faults diagnosis based on classification approach using Gaussian Mixture Model (GMM) and the Mel Frequency Cepstral Coefficients (MFCC) features. Throughout, only one criterion is defined for the evaluation of the performance during all the cycle of the classification process. This is the Average Classification Rate (ACR) obtained from the confusion matrix. In every test performed, the generated features vectors are considered along to discriminate between four fault conditions as normal bearings, bearings with inner and outer race faults and ball faults. Many configurations were tested in order to determinate the optimal values of input parameters, as the frame analysis length, the order of model, and others. The experimental application of the proposed method was based on vibration signals taken from the bearing datacenter website of Case Western Reserve University (CWRU). Results show that proposed method can reliably classify different fault conditions and have a highest classification performance under some conditions.
Źródło:
Archives of Acoustics; 2020, 45, 2; 283-295
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Element Addition, Microstructure Characteristics, Mechanical Properties, Machining and Welding Processes of the Hadfield Austenitic Manganese Steel
Autorzy:
Zellagui, Rihab
Hemmouche, Larbi
Ait-Sadi, Hassiba
Chelli, Amel
Powiązania:
https://bibliotekanauki.pl/articles/2125536.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Hadfield steel
austenite
carbides
element addition effect
machinability
welding
Opis:
High manganese steel, also called Hadfield steel, is an alloy essentially made up of iron, carbon, and manganese. This type of steel occupies an important place in the industry. It possesses high impact toughness and high resistance against abrasive wear and hardens considerably during work hardening. The problem with this kind of steel is the generation of carbides at the grain boundaries after the casting. However, heat treatment at the high-temperature range between 950°C and 1150°C followed by rapid quenching in water is proposed as a solution to remove carbides and obtain a fully austenitic structure. Under the work hardening effects, the hardness of Hadfield steel increases greatly due to the transformation of the austenite γ to martensite ε or α and mechanical twinning, which acts as an obstacle for sliding dislocations. Hot machining is the only solution to machine Hadfield steel adequately without damage of tools or changing the mechanical characteristics of the steel. The choice of welding parameters is important to prevent the formation of carbides and obtain welded steel with great characteristics. This paper aims to give an overview about Hadfield steel, element addition effect, microstructure, heat treatments, work hardening, machinability and welding processes.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 3; 863--868
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies