Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gunes, Ozge" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Applying autoregressive models in analysis of GRACE-Mascon time-series
Autorzy:
Gunes, Ozge
Aydin, Cuneyt
Powiązania:
https://bibliotekanauki.pl/articles/43852812.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
model autoregresyjny
modelowanie geoidy
gospodarka wodna
GRACE Mascon
equivalent water thickness
temporal correlation
colored noise
autoregressive model
Opis:
This study discusses how to model the noise in a Gravity Recovery and Climate Experiment (GRACE)-Mascon derived Equivalent Water Thicknesses (EWT) time-series. GRACE has provided unique information for monitoring variations in EWT of continents in regional or basin scale since 2002. To analyze a GRACE EWT time-series, a standard harmonic regression model is used, but usually assuming white noise-only stochastic model. However, like almost all kinds of geodetic time-series, it has been shown that the GRACE EWT time-series contains temporal correlations causing colored noise in the data. As well known in geodetic modelling studies, neglecting these correlations leads to underestimating the uncertainties, and so misinterpreting the significancy of the parameter estimates such as trend rate, amplitudes of signals etc. In this study, autoregressive noise modeling, which has some advantageous compared to the approaches and methods frequently applied in geodetic studies, is considered for GRACE EWT time series. For this aim, three important basins, namely theYangtze, Murray–Darling and Amazon basins have been examined. Among some applied autoregressive models, the ARMA(1,1) model is obtained as the best-fitting noise model for analyzing the EWT changes in each basin. The obtained results are discussed in terms of forecasting, significancy and consistency with GRACE-FO mission.
Źródło:
Advances in Geodesy and Geoinformation; 2022, 71, 2; art. no. e25, 2022
2720-7242
Pojawia się w:
Advances in Geodesy and Geoinformation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies