- Tytuł:
- Do different muscle strength levels affect stability during unplanned gait termination?
- Autorzy:
-
Cen, Xuanzhen
Jiang, Xinyan
Gu, Yaodong - Powiązania:
- https://bibliotekanauki.pl/articles/306615.pdf
- Data publikacji:
- 2019
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
siła mięśni
chód
ciśnienie podeszwowe
równowaga
muscle power
muscle strength
gait stop
plantar pressure
foot balance - Opis:
- Unplanned gait termination (UGT) widely occurs in various sports and daily life as a kind of stress response to unexpected stimulus. However, the body stability may be greatly affected when the body completely stops. The purpose of this study was to examine the association between muscle strength levels and body stability during UGT through comparing the plantar pressure. Methods: Twenty healthy participants (10 male and 10 female) with different lower limbs muscle strength and power were asked to perform planned gait termination (PGT) and unplanned gait termination (UGT) on an 8-m walkway. Related plantar pressure data including maximum pressure, maximum force, contact area and center of pressure were recorded with Footscan pressure platform. Results: Two types of gait termination have significant differences in the plantar pressure distribution. Maximum pressure and maximum force in the lateral metatarsal increased significantly during UGT, compared to PGT. At the same time, data from the current study suggested that there might be a correlation between the muscle strength levels of individual and the stability during the gait termination, especially between the muscle power and UGT, which means that the more excellent muscle power an individual has, the more stable the body is when UGT is performed. Conclusions: The findings suggest that different muscle strength levels could affect stability during unplanned gait termination.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2019, 21, 4; 27-35
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki