Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Grisel, Guillaume" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Length of continued fractions in principal quadratic fields
Autorzy:
Grisel, Guillaume
Powiązania:
https://bibliotekanauki.pl/articles/1390735.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
Let d ≥ 2 be a square-free integer and for all n ≥ 0, let $l((√d)^{2n+1})$ be the length of the continued fraction expansion of $(√d)^{2n+1}$. If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that $C₁(√d)^{2n+1} ≥ l((√d)^{2n+1}) ≥ C₂(√d)^{2n+1}$ for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].
Źródło:
Acta Arithmetica; 1998, 85, 1; 35-49
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies