Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gravier, Sylvain" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Some results on total domination in direct products of graphs
Autorzy:
Dorbec, Paul
Gravier, Sylvain
Klavžar, Sandi
Spacapan, Simon
Powiązania:
https://bibliotekanauki.pl/articles/743885.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
direct product
total domination
k-tuple domination
open packing
domination
Opis:
Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the {2}-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The domination number of direct products of graphs is also bounded from below.
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 1; 103-112
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hajós theorem for list colorings of hypergraphs
Autorzy:
Benzaken, Claude
Gravier, Sylvain
Skrekovski, Riste
Powiązania:
https://bibliotekanauki.pl/articles/743401.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
list-coloring
Hajós' construction
hypergraph
Opis:
A well-known theorem of Hajós claims that every graph with chromathic number greater than k can be constructed from disjoint copies of the complete graph $K_{k+1}$ by repeated application of three simple operations. This classical result has been extended in 1978 to colorings of hypergraphs by C. Benzaken and in 1996 to list-colorings of graphs by S. Gravier. In this note, we capture both variations to extend Hajós' theorem to list-colorings of hypergraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2003, 23, 2; 207-213
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Constant 2-Labellings And An Application To (R, A, B)-Covering Codes
Autorzy:
Gravier, Sylvain
Vandomme, Èlise
Powiązania:
https://bibliotekanauki.pl/articles/31341603.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
covering codes
weighted codes
infinite grid
vertex-weighted graphs
Opis:
We introduce the concept of constant 2-labelling of a vertex-weighted graph and show how it can be used to obtain perfect weighted coverings. Roughly speaking, a constant 2-labelling of a vertex-weighted graph is a black and white colouring of its vertex set which preserves the sum of the weights of black vertices under some automorphisms. We study constant 2-labellings on four types of vertex-weighted cycles. Our results on cycles allow us to determine (r, a, b)-codes in $ \mathbb{Z}^2 $ whenever |a − b| > 4, r ≥ 2 and we give the precise values of a and b. This is a refinement of Axenovich’s theorem proved in 2003.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 891-918
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies