Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gosavi, A." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Model-building adaptive critics for semi-Markov control
Autorzy:
Gosavi, A.
Murray, S.
Hu, J.
Ghosh, S.
Powiązania:
https://bibliotekanauki.pl/articles/91878.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
adaptive critics
learning algorithm
semi-Markov process
decision process
Opis:
Adaptive (or actor) critics are a class of reinforcement learning algorithms. Generally, in adaptive critics, one starts with randomized policies and gradually updates the probability of selecting actions until a deterministic policy is obtained. Classically, these algorithms have been studied for Markov decision processes under model-free updates. Algorithms that build the model are often more stable and require less training in comparison to their model-free counterparts. We propose a new model-building adaptive critic, which builds the model during the learning, for a discounted-reward semi-Markov decision process under some assumptions on the structure of the process. We illustrate the use of our algorithm with numerical results on a system with 10 states and a real-world case-study from management science.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 1; 43-58
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies