Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Goddard, Wayne" wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
The s-packing chromatic number of a graph
Autorzy:
Goddard, Wayne
Xu, Honghai
Powiązania:
https://bibliotekanauki.pl/articles/743305.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
coloring
packing
broadcast chromatic number
Opis:
Let S = (a₁, a₂, ...) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V(G) to {1,2,...,k} such that vertices with color i have pairwise distance greater than $a_i$, and the S-packing chromatic number $χ_S(G)$ of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper coloring (when S = (1,1,1,...)) and broadcast coloring (when S = (1,2,3,4,...)). In this paper, we consider bounds on the parameter and its relationship with other parameters. We characterize the graphs with $χ_S = 2$ and determine $χ_S$ for several common families of graphs. We examine $χ_S$ for the infinite path and give some exact values and asymptotic bounds. Finally we consider complexity questions, especially about recognizing graphs with $χ_S = 3$.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 4; 795-806
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Orientation distance graphs revisited
Autorzy:
Goddard, Wayne
Kanakadandi, Kiran
Powiązania:
https://bibliotekanauki.pl/articles/743689.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
orientation
distance graph
arc reversal
Opis:
The orientation distance graph ₒ(G) of a graph G is defined as the graph whose vertex set is the pair-wise non-isomorphic orientations of G, and two orientations are adjacent iff the reversal of one edge in one orientation produces the other. Orientation distance graphs was introduced by Chartrand et al. in 2001. We provide new results about orientation distance graphs and simpler proofs to existing results, especially with regards to the bipartiteness of orientation distance graphs and the representation of orientation distance graphs using hypercubes. We provide results concerning the orientation distance graphs of paths, cycles and other common graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 1; 125-136
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vertex Colorings without Rainbow Subgraphs
Autorzy:
Goddard, Wayne
Xu, Honghai
Powiązania:
https://bibliotekanauki.pl/articles/31340560.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
coloring
rainbow
monochromatic
forbidden
path
Opis:
Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For a graph F, we define the F-upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F. We present some results on this parameter for certain graph classes. The focus is on the case that F is a star or triangle. For example, we show that the K3-upper chromatic number of any maximal outerplanar graph on n vertices is [n/2] + 1.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 989-1005
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hereditary domination and independence parameters
Autorzy:
Goddard, Wayne
Haynes, Teresa
Knisley, Debra
Powiązania:
https://bibliotekanauki.pl/articles/743912.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
hereditary property
independence
Opis:
For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for arbitrary properties P that are closed under disjoint unions and subgraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 2; 239-248
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Almost Injective Colorings
Autorzy:
Goddard, Wayne
Melville, Robert
Xu, Honghai
Powiązania:
https://bibliotekanauki.pl/articles/31343577.pdf
Data publikacji:
2019-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
coloring
injective
closed neighborhood
domatic
Opis:
We define an almost-injective coloring as a coloring of the vertices of a graph such that every closed neighborhood has exactly one duplicate. That is, every vertex has either exactly one neighbor with the same color as it, or exactly two neighbors of the same color. We present results with regards to the existence of such a coloring and also the maximum (minimum) number of colors for various graph classes such as complete k-partite graphs, trees, and Cartesian product graphs. In particular, we give a characterization of trees that have an almost-injective coloring. For such trees, we show that the minimum number of colors equals the maximum degree, and we also provide a polynomial-time algorithm for computing the maximum number of colors, even though these questions are NP-hard for general graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 1; 225-239
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Worm Colorings
Autorzy:
Goddard, Wayne
Wash, Kirsti
Xu, Honghai
Powiązania:
https://bibliotekanauki.pl/articles/31339329.pdf
Data publikacji:
2015-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
coloring
rainbow
monochromatic
forbidden
path
Opis:
Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes. The focus is on the case that F is the path on three vertices.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 3; 571-584
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Offensive alliances in graphs
Autorzy:
Favaron, Odile
Fricke, Gerd
Goddard, Wayne
Hedetniemi, Sandra
Hedetniemi, Stephen
Kristiansen, Petter
Laskar, Renu
Skaggs, R.
Powiązania:
https://bibliotekanauki.pl/articles/744502.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
alliance
offensive
majority
graph
Opis:
A set S is an offensive alliance if for every vertex v in its boundary N(S)- S it holds that the majority of vertices in v's closed neighbourhood are in S. The offensive alliance number is the minimum cardinality of an offensive alliance. In this paper we explore the bounds on the offensive alliance and the strong offensive alliance numbers (where a strict majority is required). In particular, we show that the offensive alliance number is at most 2/3 the order and the strong offensive alliance number is at most 5/6 the order.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 2; 263-275
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies