Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gayatri, Rianyza" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Preparation and Characterization of ZnO-Zeolite Nanocomposite for Photocatalytic Degradation by Ultraviolet Light
Autorzy:
Gayatri, Rianyza
Agustina, Tuty Emilia
Bahrin, David
Moeksin, Rosdiana
Gustini, Gustini
Powiązania:
https://bibliotekanauki.pl/articles/1838249.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
nanocomposite
ZnO
synthetic zeolite
sol-gel
photocatalytic degradation
procion red
Opis:
The increasing growth of the textile industry does not only provide benefits in the economic sector but also has the potential to damage the environment, because it generates the dye wastewater which is hard to eliminate. Procion red is one of the synthetic textile dyes that is toxic to the aquatic environment and it needs to be processed properly. The photocatalytic method of processing dye wastewater is the most effective, because it can remove the harmful pollutants in the dye wastewater. This study aimed to prepare and characterize the ZnO-Zeolite nanocomposites for photocatalytic applications tested with a 50 mg/L procion red dye sample. The nanocomposites consisted of the ZnO semiconductors and synthetic zeolite adsorbents prepared by using the sol-gel method. The dye degradation test was carried out under the irradiation conditions with ultraviolet (UV) lamp. Apart from the ZnO-Zeolite nanocomposite, testing was also carried out with the synthetic zeolite and ZnO. The results of SEM-EDX and XRD characterization proved that the nanocomposite forming components were ZnO and zeolite and could be seen from the resulting peaks. BET showed that the surface area value of the ZnO-Zeolite nanocomposite increased to 95.98 m2/g, the pore size of the ZnO-Zeolite nanocomposite was 4.42 nm, and the total pore volume was 0.08 cm3/g. The obtained average crystalline size of ZnO-Zeolite nanocomposite was 32.87 nm. The percentage of dye degradation using the ZnO-Zeolite nanocomposite for 120 minutes has reached 90.42%.
Źródło:
Journal of Ecological Engineering; 2021, 22, 2; 178-186
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reduction of Copper, Iron, and Lead Content in Laboratory Wastewater Using Zinc Oxide Photocatalyst under Solar Irradiation
Autorzy:
Agustina, Tuty Emilia
Habiburrahman, Muhammad
Amalia, Farah
Arita, Susila
Faizal, Muhammad
Novia
Gayatri, Rianyza
Powiązania:
https://bibliotekanauki.pl/articles/2202163.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
AOPs
photocatalysis
heavy metals
sunlight
zinc oxide
Opis:
Heavy metal is a type of metal that has a high density and high toxicity when consumed by living things, especially humans. To prevent the impact of environmental pollution, optimal handling of wastewater containing heavy metals is required, including the wastewater from laboratories. This research aimed to study the effect of pH, catalyst dose, and irradiation time on the reduction of Copper (Cu), Iron (Fe), and Lead (Pb) heavy metals and their application to laboratory wastewater treatment. Among the Advanced Oxidation Processes (AOPs) methods, photocatalysis was chosen to reduce the level of Cu, Fe, and Pb heavy metals where zinc oxide (ZnO) is used as a photocatalyst and the sunlight as a light source. To determine the effect of pH, catalyst dose, and time on the reduction of heavy metal levels, firstly, this research used the synthetic wastewater containing Cu, Fe, or Pb heavy metals. On the basis of the experimental results, it is concluded that the pH value, catalyst dose, and time affect the photocatalytic process, decreasing the levels of Cu, Fe, and Pb metals. The optimum pH value obtained for Cu was at pH 7–8, for Fe it was at pH 6, and for Pb it was at pH 8; in turn, the metal removal percentages were 99.46, 99.91, and 99.70%, respectively. In the photocatalysis of synthetic wastewater, high removal percentage of more than 99% was achieved by using 0.1 g/L catalyst. The optimum decrease of metals occurred in the first 15 minutes of solar irradiation where the removal percentage was close to 100%. In this study, the application of ZnO photocatalyst under solar irradiation can reduce the heavy metals content in the laboratory wastewater by almost 100%, which meets the environmental quality standard for Cu, Fe, and Pb.
Źródło:
Journal of Ecological Engineering; 2022, 23, 10; 107--115
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Treatment of Laboratory Wastewater by Using Fenton Reagent and Combination of Coagulation-Adsorption as Pretreatment
Autorzy:
Arita, Susila
Agustina, Tuty Emilia
Ilmi, Nurul
Pranajaya, Violanda Dwi Wulandari
Gayatri, Rianyza
Powiązania:
https://bibliotekanauki.pl/articles/2173343.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
laboratory wastewater
fenton reagent
coagulation
adsorption
heavy metal
Opis:
Laboratory wastewater contains organic and inorganic compounds that are harmful to the environment when disposed of without prior treatment. Besides the high COD and BOD values, the laboratory wastewater also contains metals such as iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), and lead (Pb) which is categorized as dangerous waste material and can pollute the groundwater. Although the quantity of wastewater produced by the laboratory is relatively small, it has a real impact on the environment around the laboratory. However, the wastewater has to be treated properly before being discharged into the environment. The aim of the research was to study the laboratory wastewater treatment by using Fenton’s reagent with coagulation and adsorption pretreatment. In the pretreatment with coagulation, three types of coagulants are used, namely PAC (Poly Aluminum Chloride), ACH (Aluminum Chlorohydrate) and Aluminum Sulfate (AS) with their respective concentrations of 10–80 ppm. The highest percentage of average pollutant removal of 58.21% was found when 80 ppm of AS was applied. The pretreatment was continued by adsorption with activated carbon and zeolite adsorbents within 60–120 minutes of mixing time. It was detected that the most optimum adsorbent was activated carbon with average pollutant removal of 50.22% within 1 hour of mixing time. Processing was extended by utilized Fenton’s reagent using a variation of the molar ratio between 1:100 and 1:400. It was obtained that the best molar ratio to degrade the laboratory wastewater is 1:300 with an average removal of pollutant of 43.45%. As a result of laboratory wastewater treatment using combine Fenton’s reagent and coagulation-adsorption pretreatment, an average pollutant removal of 90.81% was obtained. The final content of COD, BOD, TSS, as well as Cu and Pb metal has met the environmental quality standard.
Źródło:
Journal of Ecological Engineering; 2022, 23, 8; 211--221
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies