- Tytuł:
- T–S fuzzy BIBO stabilisation of non-linear systems under persistent perturbations using fuzzy Lyapunov functions and non-PDC control laws
- Autorzy:
-
Salcedo, José V.
Martínez, Miguel
García-Nieto, Sergio
Hilario, Adolfo - Powiązania:
- https://bibliotekanauki.pl/articles/330030.pdf
- Data publikacji:
- 2020
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
linear matrix inequalities
Takagi–Suegno fuzzy system
fuzzy Lyapunov function
integral delayed Lyapunov function
nonparallel distributed fuzzy controller
generalised inescapable ellipsoids
liniowe nierówności macierzowe
model rozmyty Takagi-Sugeno
funkcja Lapunowa - Opis:
- This paper develops an innovative approach for designing non-parallel distributed fuzzy controllers for continuous-time non-linear systems under persistent perturbations. Non-linear systems are represented using Takagi–Sugeno fuzzy models. These non-PDC controllers guarantee bounded input bounded output stabilisation in closed-loop throughout the computation of generalised inescapable ellipsoids. These controllers are computed with linear matrix inequalities using fuzzy Lyapunov functions and integral delayed Lyapunov functions. LMI conditions developed in this paper provide non-PDC controllers with a minimum ⋆-norm (upper bound of the 1-norm) for the T–S fuzzy system under persistent perturbations. The results presented in this paper can be classified into two categories: local methods based on fuzzy Lyapunov functions with guaranteed bounds on the first derivatives of membership functions and global methods based on integral-delayed Lyapunov functions which are independent of the first derivatives of membership functions. The benefits of the proposed results are shown through some illustrative examples.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 529-550
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki