Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gajda-Zagórska, E." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Recognizing Sets in Evolutionary Multiobjective Optimization
Autorzy:
Gajda-Zagórska, E.
Powiązania:
https://bibliotekanauki.pl/articles/308467.pdf
Data publikacji:
2012
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
basin of attraction
clustering
genetic algorithm
multiobjective optimization
Opis:
Among Evolutionary Multiobjective Optimization Algorithms (EMOA) there are many which find only Paretooptimal solutions. These may not be enough in case of multimodal problems and non-connected Pareto fronts, where more information about the shape of the landscape is required. We propose a Multiobjective Clustered Evolutionary Strategy (MCES) which combines a hierarchic genetic algorithm consisting of multiple populations with EMOA rank selection. In the next stage, the genetic sample is clustered to recognize regions with high density of individuals. These regions are occupied by solutions from the neighborhood of the Pareto set. We discuss genetic algorithms with heuristic and the concept of well-tuning which allows for theoretical verification of the presented strategy. Numerical results begin with one example of clustering in a single-objective benchmark problem. Afterwards, we give an illustration of the EMOA rank selection in a simple two-criteria minimization problem and provide results of the simulation of MCES for multimodal, multi-connected example. The strategy copes with multimodal problems without losing local solutions and gives better insight into the shape of the evolutionary landscape. What is more, the stability of solutions in MCES may be analyzed analytically.
Źródło:
Journal of Telecommunications and Information Technology; 2012, 1; 74-82
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
HP-HGS strategy for inverse AC/DC resistivity logging measurement simulations
Autorzy:
Gajda-Zagórska, E.
Paszyński, M
Schaefer, R.
Pardo, D.
Powiązania:
https://bibliotekanauki.pl/articles/305666.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
resistivity logging simulations
adaptive finite element method
hierarchical genetic search
inverse problems
Opis:
In this paper, we present resistivity-logging-measurement simulation with the use of two types of borehole logging devices: those which operate with zero frequency (direct current, DC) and those with higher frequencies (alternate current, AC). We perform simulations of 3D resistivity measurements in deviated wells, with a sharp angle between the borehole and formation layers. We introduce a hierarchical adaptive genetic strategy hp−HGS interfaced with an adaptive finite element method. We apply a strategy for the solution of the inverse problem, where we identify the resistivities of the formation layers based on a given measurement. We test the strategy on both direct and alternate current cases.
Źródło:
Computer Science; 2013, 14 (4); 629-644
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid algorithm for solving inverse problems in elasticity
Autorzy:
Barabasz, B.
Gajda-Zagórska, E.
Migórski, S.
Paszyński, M.
Schaefer, R.
Smołka, M.
Powiązania:
https://bibliotekanauki.pl/articles/331427.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
inverse problem
hierarchic genetic strategy
hybrid optimization
automatic hp adaptive finite element method
zagadnienie odwrotne
strategia genetyczna
optymalizacja hybrydowa
metoda elementów skończonych
Opis:
The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 4; 865-886
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies