Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gadomer, Ł." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Real time gesture recognition in 3d space using selected classifiers
Autorzy:
Gadomer, Ł.
Skoczylas, M.
Powiązania:
https://bibliotekanauki.pl/articles/398585.pdf
Data publikacji:
2014
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
przestrzeń trójwymiarowa
rozpoznawanie gestów
środowisko
3-dimensional space
gesture recognition
CAVE environment
Opis:
In this paper, authors propose a solution to track gestures of hands in 3-dimensional space that can be inserted into a CAVE3D environment. Idea of gestures recognition system is described and the results of research made on a recorded gesture data. In this study three selected classifiers to resolve this problem have been tested and results compared.
Źródło:
Architecturae et Artibus; 2014, 6, 1; 14-18
2080-9638
Pojawia się w:
Architecturae et Artibus
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards gesture recognition in three-dimensional space
Rozpoznawanie gestów w przestrzeni trójwymiarowej
Autorzy:
Gadomer, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/88434.pdf
Data publikacji:
2015
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
klasyfikacja danych
rozpoznawanie gestów
cechy
przestrzeń trójwymiarowa
kinect
data classification
gesture recognition
data features
three-dimensional space
Opis:
In this work, author describes the continuation of his researches about gesture recognition. The previous varaint of the solution was using plain data and was dependent of the performance velocity. In the described researches author made it speed and position invariant by resolving problem of too long or too short gestures – in a previous solution the user had to decide about gesture duration time before performing, now it is not necessary. He also proposed another data representations, using features computed of recorded data. Previous representation, which assumed storing relative positions between samples, was replaced by transforming each gesture to the axis origin and normalizing. He also tried to connect these two representations – plain data and features – into a single one. All of these new data representations were tested using the SVM classifier, which was judged to be the best for the given problem in the previous work. Each of them was tested using one of four popular SVM kernel functions: linear, polynomial, sigmoid and radial basis function (RBF). All achieved results are presented and compared.
W niniejszym artykule autor opisał kontynuację swoich badań dotyczących rozpoznawania gestów. Ulepszył on stworzone przez siebie rozwiązanie w taki sposób, aby nagrywanie i rozpoznawanie gestów było niezależne od szybkości ich wykonywania, a co za tym idzie — ich zróżnicowanej długości. Zaproponował on także inne reprezentacje danych, za pomocą których wyrażany jest stworzony zbiór gestów. Wcześniejsze rozwiązanie, opierające się na przechowywaniu relatywnego położenia dłoni w stosunku do poprzedniej zarejestrowanej próbki (poprzedniego położenia), zastąpione zostało sprowadzeniem gestu do początku układu współrzędnych i zastąpieniem wartości relatywnych absolutnymi, a następnie ich normalizację Z tak przygotowanego zbioru gestów obliczone zostały cechy stanowiące drugą zaproponowaną reprezentację danych. Trzecia reprezentacja stanowi połączenie dwóch poprzednich: zawiera jednocześnie bezpośrednie wartości wyrażające ruch dłoni, jak i obliczone na podstawie jego cechy. Wszystkie trzy reprezentacje zostały przetestowane przy pomocy klasyfikatora, który okazał się najlepszy dla zadanego problemu podczas przeprowadzania wcześniejszych badań: SVM. Porównano, jak z zadanym problemem radzą sobie cztery popularne funkcje jądra: liniowa, wielomianowa, sigmoidalna i radialna. Otrzymane wyniki zostały przedstawione, porównane i omówione.
Źródło:
Advances in Computer Science Research; 2015, 12; 5-20
2300-715X
Pojawia się w:
Advances in Computer Science Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies