- Tytuł:
- Orientable $ \mathbb{Z}_N $-Distance Magic Graphs
- Autorzy:
-
Cichacz, Sylwia
Freyberg, Bryan
Froncek, Dalibor - Powiązania:
- https://bibliotekanauki.pl/articles/31343411.pdf
- Data publikacji:
- 2019-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
distance magic graph
digraph
flow graph - Opis:
- Let $ G = (V, E) $ be a graph of order $n$. A distance magic labeling of $G$ is a bijection $ \mathcal{l}: V \rightarrow {1, 2, . . ., n} $ for which there exists a positive integer $k$ such that $ \Sigma_{ x \in N(v) } \mathcal{l} (x) = k $ for all $ v \in V $, where $ N(v) $ is the open neighborhood of $v$. Tuttes flow conjectures are a major source of inspiration in graph theory. In this paper we ask when we can assign $n$ distinct labels from the set $ {1, 2, . . ., n} $ to the vertices of a graph $G$ of order $n$ such that the sum of the labels on heads minus the sum of the labels on tails is constant modulo $n$ for each vertex of $G$. Therefore we generalize the notion of distance magic labeling for oriented graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 533-546
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki