Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fang, Runji" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Classification and inspection of milling surface roughness based on a broad learning system
Autorzy:
Fang, Runji
Yi, Huaian
Wang, Shuai
Niu, Yilun
Powiązania:
https://bibliotekanauki.pl/articles/2173883.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
broad learning system
classification
milling surface roughness
rapid training
Opis:
Current vision-based roughness measurement methods are classified into two main types: index design and deep learning. Among them, the computation procedure for constructing a roughness correlation index based on image data is relatively difficult, and the imaging environment criteria are stringent and not universally applicable. The roughness measurement method based on deep learning takes a long time to train the model, which is not conducive to achieving rapid online roughness measurement. To tackle with the problems mentioned above, a visual measurement method for surface roughness of milling workpieces based on broad learning system was proposed in this paper. The process began by capturing photos of the milling workpiece using a CCD camera in a normal lighting setting. Then, the train set was augmented with additional data to lower the quantity of data required by the model. Finally, the broad learning system was utilized to achieve the classification prediction of roughness. The experimental results showed that the roughness measurement method in this paper not only had a training speed incomparable to deep learning models, but also could automatically extract features and exhibited high recognition accuracy.
Źródło:
Metrology and Measurement Systems; 2022, 29, 3; 483--503
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Visual detection of milling surface roughness based on improved YOLOV5
Autorzy:
Lv, Xiao
Yi, Huaian
Fang, Runji
Ai, Shuhua
Lu, Enhui
Powiązania:
https://bibliotekanauki.pl/articles/27311755.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
surface roughness
improved Yolov5
detection speed
attentional mechanisms
Opis:
Workpiece surface roughness measurement based on traditional machine vision technology faces numerous problems such as complex index design, poor robustness of the lighting environment, and slow detection speed, which make it unsuitable for industrial production. To address these problems, this paper proposes an improved YOLOv5 method for milling surface roughness detection. This method can automatically extract image features and possesses higher robustness in lighting environments and faster detection speed. We have effectively improved the detection accuracy of the model for workpieces located at different positions by introducing Coordinate Attention (CA). The experimental results demonstrate that this study’s improved model achieves accurate surface roughness detection for moving workpieces in an environment with light intensity ranging from 592 to 1060 lux. The average precision of the model on the test set reaches 97.3%, and the detection speed reaches 36 frames per second.
Źródło:
Metrology and Measurement Systems; 2023, 30, 3; 531--548
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies