Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "El Gadari, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
The non-unicity of the film thickness in the hydrodynamic lubrication: novel approach generating equivalent micro-grooves and roughness
Autorzy:
El Gadari, M.
Hajjam, M.
Powiązania:
https://bibliotekanauki.pl/articles/2106447.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
równanie Reynoldsa
mikrotekstura
siła tarcia
siła nośna
Reynolds equation
inverse theory
micro-texture
cavitation
lifting force
friction force
flow rate
Opis:
Since the 1960s, all studies have assumed that a film thickness “h” provides a unique pressure field “p” by resolving the Reynolds equation. However, it is relevant to investigate the film thickness unicity under a given hydrodynamic pressure within the inverse theory. This paper presents a new approach to deduce from an initial film thickness a widespread number of thicknesses providing the same hydrodynamic pressure under a specific condition of gradient pressure. For this purpose, three steps were presented: 1) computing the hydrodynamic pressure from an initial film thickness by resolving the Reynolds equation with Gümbel’s cavitation model, 2) using a new algorithm to generate a second film thickness, 3) comparing and validating the hydrodynamic pressure produced by both thicknesses with the modified Reynolds equation. Throughout three surface finishes: the macro-shaped, micro-textured, and rough surfaces, it has been demonstrated that under a specific hydrodynamic pressure gradient, several film thicknesses could generate the same pressure field with a slight difference by considering cavitation. Besides, this paper confirms also that with different ratios of the averaged film thickness to the root mean square (RMS) similar hydrodynamic pressure could be generated, thereby the deficiency of this ratio to define the lubrication regime as commonly known from Patir and Cheng theory.
Źródło:
International Journal of Applied Mechanics and Engineering; 2021, 26, 3; 44--61
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The grooved lip effect on reciprocating hydraulic rod seal performances in transient condition: elastohydrodynamic lubrication
Autorzy:
Bahi, Y.
El Gadari, M.
Rahmoune, M.
Powiązania:
https://bibliotekanauki.pl/articles/264834.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
chropowatość
siła tarcia
wyciek
hydraulic rod seal
surface textured
roughness
friction force
leakage
Opis:
It is commonly known that the sealing performance of dynamic seals is significantly influenced by the surface finish. To reduce friction effect and leakage ratio, new generations of grooved lip or shaft have emerged, but only two computational models were performed up to now with a textured elastomeric lip: spiral groove in the axial direction or micro-cavities according to the circumferential direction. However, if the numerical results have confirmed the slight effect of the grooved lip on the rotary lip seal performances, it seems relevant to investigate the influence of such grooves on the reciprocating hydraulic rod seal behavior. Thus, the scope of this work is to perform a parametric study of the grooved lip throughout a one-dimensional elastohydrodynamic model by taking into account the elasticity of the lip and the shaft roughness. After confirming the validity of the current model, numerical simulations have been performed and compared with experiments. The effect of lip grooves on the hydraulic rod seal behavior in outstroke and instroke shaft motion has been underlined. Thereby, it is shown that the leakage and the average film thickness are sensible to both the depth and the density of the lip groove. Additionally, a slight effect of the pattern shape is observed on the friction force.
Źródło:
International Journal of Applied Mechanics and Engineering; 2020, 25, 2; 11-21
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of relative velocity between rough surfaces: hydrodynamic lubrication of rotary lip seal
Autorzy:
Lahjouji, I.
El Gadari, M.
El Fahime, B.
Radouani, M.
Powiązania:
https://bibliotekanauki.pl/articles/264554.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
hydrodynamic lubrication
roughness
relative velocity
Reynolds equation
finite differences
smarowanie
chropowatość
prędkość względna
równanie Reynoldsa
Opis:
Since the sixties, most of numerical studies that model the rotary lip seal lubrication have been restricted by assuming that one of the two opposing surfaces is smooth: either the lip or the shaft. This hypothesis, although it is verified only for a shaft roughness ten times smaller than that of the seal, is the best solution to avoid the transient term “∂h/∂t” in the deterministic approach. Thus, the subject of the present study is twofold. The first part validates the current hydrodynamic model with the international literature by assuming the asperities on the lip and shaft as a two-dimensional cosine function. In the second part the Reynolds equation for rough surfaces with relative motion is solved. The numerical results show that the relative motion between rough surfaces impacts significantly the load support and the leakage rate, but affects slightly the friction torque.
Źródło:
International Journal of Applied Mechanics and Engineering; 2017, 22, 2; 321-332
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies