Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Drewnowski, Lech" wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Nonseparability of the quotient space cabv(∑,m;X)/L¹(m;X) for Banach spaces X without the Radon-Nikodym property
Autorzy:
Drewnowski, Lech
Powiązania:
https://bibliotekanauki.pl/articles/1292918.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Banach space
spaces of vector measures
Bochner integrable functions
Radon-Nikodym property
nonseparable quotient space
Opis:
It is shown that if (S,∑,m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(∑,m;X)/L¹(m;X) is nonseparable.
Źródło:
Studia Mathematica; 1993, 104, 2; 125-132
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Banach spaces of regulated functions
Autorzy:
Drewnowski, Lech
Powiązania:
https://bibliotekanauki.pl/articles/1912831.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Regulated function
left- and right-continuity
Banach spaces
\(c_0(S)\) spaces
triple Sorgenfrey line
Alexandrov--Urysohn constructions
\(C(K)\) spaces, isomorphisms
Opis:
For a relatively compact subset \(S\) of the real line \(\BR\), let \(R(S)\) denote the Banach space (under the sup norm) of all regulated scalar functions defined on \(S\). The purpose of this paper is to study those closed subspaces of \(R(S)\) that consist of functions that are left-continuous, right-continuous, continuous, and have a (two-sided) limit at each point of some specified disjoint subsets of \(S\). In particular, some of these spaces are represented as \(C(K)\) spaces for suitable, explicitly constructed, compact spaces \(K\).
Źródło:
Commentationes Mathematicae; 2017, 57, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arrangements of series preserving their convergence or boundedness
Autorzy:
Drewnowski, Lech
Powiązania:
https://bibliotekanauki.pl/articles/745881.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Convergent series
bounded series
permutations of series
arrangements of series
topological vector space
spaces of bounded or convergent series
Opis:
For a map \(\rho\) of \(\mathbb{N}\) into itself, consider the induced transformation \(\sum_{n} x_n \mapsto \sum_{n} x_{\rho_(n)}\) of series in a topological vector space. Then such properties of this transformation as sending convergent series to convergent series, or convergent series to bounded series, or bounded series to bounded series (and a few more) are mutually equivalent. Moreover, they are equivalent to an intrinsic property of ρ which reduces to those found by Agnew and Pleasants (in the case of permutations) and Wituła (in the general case) as necessary and sufficient conditions for the above transformation to preserve convergence of scalar series. In the paper, the scalar case is treated first using simple Banach space methods, and then the result is easily extended to the general setting.
Źródło:
Commentationes Mathematicae; 2007, 47, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vector series whose lacunary subseries converge
Autorzy:
Drewnowski, Lech
Labuda, Iwo
Powiązania:
https://bibliotekanauki.pl/articles/1206244.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
subseries convergence
lacunary subseries
zero-density subseries
lacunary convergence property
topological Riesz space of measurable functions
topological vector space of Bochner measurable functions
Lebesgue property
Levi property
copy of $c_0$
Opis:
The area of research of this paper goes back to a 1930 result of H. Auerbach showing that a scalar series is (absolutely) convergent if all its zero-density subseries converge. A series $∑_n x_n$ in a topological vector space X is called ℒ-convergent if each of its lacunary subseries $∑_k x_{n_k}$ (i.e. those with $n_{k+1} - n_k → ∞$) converges. The space X is said to have the Lacunary Convergence Property, or LCP, if every ℒ-convergent series in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence Property, or ZCP, is defined similarly though of lesser importance here. It is shown that for every ℒ-convergent series the set of all its finite sums is metrically bounded; however, it need not be topologically bounded. Next, a space with the LCP contains no copy of the space $c_0$. The converse holds for Banach spaces and, more generally, sequentially complete locally pseudoconvex spaces. However, an F-lattice of measurable functions is constructed that has both the Lebesgue and Levi properties, and thus contains no copy of $c_0$, and, nonetheless, lacks the LCP. The main (and most difficult) result of the paper is that if a Banach space E contains no copy of $c_0$ and λ is a finite measure, then the Bochner space $L_0$ (λ,e) has the LCP. From this, with the help of some Orlicz-Pettis type theorems proved earlier by the authors, the LCP is deduced for a vast class of spaces of (scalar and vector) measurable functions that have the Lebesgue type property and are "metrically-boundedly sequentially closed" in the containing $L_0$ space. Analogous results about the convergence of ℒ-convergent positive series in topological Riesz spaces are also obtained. Finally, while the LCP implies the ZCP trivially, an example is given that the converse is false, in general.
Źródło:
Studia Mathematica; 2000, 138, 1; 53-80
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies