Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dogan, D." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Removal of indigo carmine from an aqueous solution by fungus Pleurotus Ostreatus
Autorzy:
Kahraman, S.
Kuru, F.
Dogan, D.
Yesilada, O.
Powiązania:
https://bibliotekanauki.pl/articles/204562.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
indigo carmine
decolorization
Pleurotus ostreatus
dead biomass
fungus
Opis:
The role of fungi in the treatment of wastewater has been extensively researched. Many genera of fungi have been employed for the dye decolourization either in living or dead form. In this study, the removal of an acidic dye, Indigo Carmine (IC), from an aqueous solution by biosorption on dead fungus, Pleurotus ostreatus, was investigated. The effects of contact time, initial dye concentration, amount of dead biomass, agitation rate and initial pH on dye removal have been determined. Experimental results show that an increase in the amount of dead biomass positively affected the dye removal. The highest removal was obtained at 150–200 rpm. Slightly lower removing activities were found at lower agitation rates. The dye adsorption effi ciency was not affected by pH except minor variation in the pH of 2–8. Color removal was observed to occur rapidly within 60 minutes. The removal of dye by dead biomass of P. ostreatus was clearly dependent on the initial dye concentration of the solution. Dye removal was reduced from 93% to 64% as concentration was increased from 50 to 500 mg/L Indigo Carmine. This study showed that it was possible to remove textile dyes by dead biomass of P. ostreatus.
Źródło:
Archives of Environmental Protection; 2012, 38, 3; 51-57
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Different Calcium Precursors on Biomimetic Hydroxyapatite Powder Properties
Autorzy:
Karakaş, A.
Hazar Yoruç, A.
Ceylan Erdoğan, D.
Doğan, M.
Powiązania:
https://bibliotekanauki.pl/articles/1491413.pdf
Data publikacji:
2012-01
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
87.85.J-
Opis:
Hydroxyapatite is the main component of human hard tissues such as bones and teeth. Because it has a great biocompatibility with human organism, it is used as biomaterial with the purpose of form and repair hard tissues. Hydroxyapatite is formulated as $Ca_{10}(PO_4)_6(OH)_2$ and shows high stability under physiological conditions. In this study, biomimetic hydroxyapatite powder has been synthesized using by synthetic body fluids which has the same composition as human blood plasma. Moreover, the effect of different precursors on properties of synthesized powders has been investigated. For that purpose calcium nitrate tetrahydrate $[Ca(NO_3)_2 ·4H_2O]$, calcium chloride $[CaCl_2]$, calcium hydroxide $[Ca(OH)_2]$ and diammonium hydrogen phosphate $[(NH_4)_2HPO_4]$ were used as precursors. Mainly literature focused on the synthesis of hydroxyapatite powders was carried out using chemical method. However, in this study, the synthesis of hydroxyapatite powder is carried out using biomimetic method. Chemical structures of synthesized powders have been investigated by the Fourier transform infrared and X-ray diffraction methods. Results showed that synthesized powders have a pure hydroxyapatite structure. Surface area of the synthesized powders was measured by the Brunauer-Emmett-Teller method. Morphological structures have been characterized by using scanning electron microscopy. Furthermore, particle size of powders was calculated using the Brunauer-Emmett-Teller method. It was clearly seen that morphological properties of biomimetic hydroxyapatite have affected the use of different calcium precursors.
Źródło:
Acta Physica Polonica A; 2012, 121, 1; 236-239
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Immobilization of Lycinibacillus fusiformis B26 cells in different matrices for use in turquoise blue HFG decolourization
Autorzy:
Dogan, N. M.
Sensoy, T.
Doganli, G. A.
Bozbeyoglu, N. N.
Arar, D.
Akdogan, H. A.
Canpolat, M.
Powiązania:
https://bibliotekanauki.pl/articles/204696.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
agar
calcium alginate
decolourization
FTIR
immobilization
pumice
Opis:
The decolourization of Turquoise Blue HFG by immobilized cells of Lysinibacillus fusiformis B26 was investigated. Cells of L. fusiformis B26 were immobilized by entrapment in agar and calcium alginate matrices and attached in pumice particles. The effects of operational conditions (e.g., agar concentrations, cell concentrations, temperature, and inoculum amount) on microbial decolourization by immobilized cells were investigated. The results revealed that alginate was proven to be the best as exhibiting maximum decolourization (69.62%), followed by agar (55.55%) at 40°C. Pumice particles were the poorest. Optimum conditions for agar matrix were found: concentration was 3%, cell amount was 0.5 g and temperature was 40°C (55.55%). Ca-alginate beads were loaded with 0.5, 1.0 and 2.0 g of wet cell pellets and the highest colour removal activity was observed with 2.0 g of cell pellet at 40°C for alginate beads. Also, 0.5 and 1.0 g of pumice particles that were loaded with 0.25 and 0.5 g of cell pellets respectively were used and the results were found very similar to each other.
Źródło:
Archives of Environmental Protection; 2016, 42, 2; 92-99
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies