Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cindric, Marina" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Growth suppression of human breast carcinoma stem cells by lipid peroxidation product 4-hydroxy-2-nonenal and hydroxyl radical-modified collagen
Autorzy:
Cipak, Ana
Mrakovcic, Lidija
Ciz, Milan
Lojek, Antonin
Mihaylova, Boryana
Goshev, Ivan
Jaganjac, Morana
Cindric, Marina
Sitic, Sanda
Margaritoni, Marko
Waeg, Georg
Balic, Marija
Zarkovic, Neven
Powiązania:
https://bibliotekanauki.pl/articles/1040399.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
collagen
4-hydroxynonenal
breast cancer stem cells
extracellular matrix
oxidative homeostasis
SUM159
Opis:
Breast cancer is a leading cause of mortality and morbidity in women, mostly due to high metastatic capacity of mammary carcinoma cells. It has been revealed recently that metastases of breast cancer comprise a fraction of specific stem-like cells, denoted as cancer stem cells (CSCs). Breast CSCs, expressing specific surface markers CD44+CD24-/lowESA+ usually disseminate in the bone marrow, being able to spread further and cause late metastases. The fundamental factor influencing the growth of CSCs is the microenvironment, especially the interaction of CSCs with extracellular matrix (ECM). The structure and function of ECM proteins, such as the dominating ECM protein collagen, is influenced not only by cancer cells but also by various cancer treatments. Since surgery, radio and chemotherapy are associated with oxidative stress we analyzed the growth of breast cancer CD44+CD24-/lowESA+ cell line SUM159 cultured on collagen matrix in vitro, using either native collagen or the one modified by hydroxyl radical. While native collagen supported the growth of CSCs, oxidatively modified one was not supportive. The SUM159 cell cultures were further exposed to a supraphysiological (35 µM) dose of the major bioactive lipid peroxidation product 4-hydroxynonenal (HNE), a well known as 'second messenger of free radicals', which has a strong affinity to bind to proteins and acts as a cytotoxic or as growth regulating signaling molecule. Native collagen, but not oxidised, abolished cytotoxicity of HNE, while oxidized collagen did not reduce cytotoxicity of HNE at all. These preliminary findings indicate that beside direct cytotoxic effects of anticancer therapies consequential oxidative stress and lipid peroxidation modify the microenvironment of CSCs influencing oxidative homeostasis that could additionally act against cancer.
Źródło:
Acta Biochimica Polonica; 2010, 57, 2; 165-171
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Induction of CMV-1 promoter by 4-hydroxy-2-nonenal in human embryonic kidney cells
Autorzy:
Jaganjac, Morana
Matijevic, Tanja
Cindric, Marina
Cipak, Ana
Mrakovcic, Lidija
Gubisch, Wolfgang
Zarkovic, Neven
Powiązania:
https://bibliotekanauki.pl/articles/1040401.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
cytomegalovirus
4-hydroxy-2-nonenal
oxidative stress
Opis:
Oxidative stress, i.e., excessive production of oxygen free radicals and reactive oxygen species, leads to lipid peroxidation and to formation of reactive aldehydes which act as second messengers of free radicals. It has previously been shown that oxidative stress may be involved in the transcriptional regulation of cytomegalovirus (CMV) immediate early promoter, involved in viral reactivation from latency. In the current study we used a plasmid containing the yellow fluorescent protein (YFP) gene under the control of CMV-1 promoter to monitor the influence of hydrogen peroxide and reactive aldehydes, 4-hydroxy-2-nonenal (HNE) and acrolein, on CMV-1 promoter activation in human embryonic kidney cells (HEK293). While acrolein was ineffective, hydrogen peroxide slightly (50 %) stimulated the CMV promoter. In contrast, HNE had a strong, up to 3-fold, enhancing effect on the CMV-1 promoter within four as well as after 24h of treatment. The most effective was the treatment with 24 µM HNE. This effect of HNE suggests that stressful conditions associated with lipid peroxidation could lead to CMV activation.
Źródło:
Acta Biochimica Polonica; 2010, 57, 2; 179-183
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of 4-hydroxynonenal and spleen cells on primary hepatocyte culture and a novel liver-derived cell line resembling hepatocyte stem cells
Autorzy:
Cipak, Ana
Borovic, Suzana
Jaganjac, Morana
Bresgen, Nikolaus
Kirac, Iva
Grbesa, Ivana
Mrakovcic, Lidija
Cindric, Marina
Scukanec-Spoljar, Mira
Gall-Troselj, Koraljka
Coric, Marijana
Eckl, Peter
Zarkovic, Neven
Powiązania:
https://bibliotekanauki.pl/articles/1040402.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
novel-liver derived cell line
spleen
4-hydroxynonenal
hepatocyte
Opis:
Liver is a unique mammalian organ with a great capacity of regeneration related to its function. After surgical resection or injury, hepatic cells, especially hepatocytes, can proliferate rapidly to repair the damage and to regenerate the structure without affecting the function of the liver. Loss of catalase activity during regeneration indicates that oxidative stress is present in the liver not only in pathological conditions but also as a 'physiological' factor during regeneration. As we have shown in our previous work, liver stem cell-like cells treated with 4-hydroxynonenal (HNE), a cytotoxic and growth regulating lipid peroxidation product, recover in the presence of spleen cells. In the current study we characterized this novel cell line as liver-derived progenitor/oval-like cells, (LDP/OCs), i.e. functional liver stem-like cells. We showed that LDP/OC were OV6 positive, with abundant glycogen content in the cytoplasm and expressed α-fetoprotein, albumin, biliverdin reductase and γ-glutamyl transferase. Also, we compared their growth in vitro with the growth of cultured primary hepatocytes stressed with HNE and co-cultured with autologous spleen cells. The influence of spleen cells on HNE-treated primary hepatocytes and on LDP/OCs showed that spleen cells support in a similar manner the recovery of both types of liver cells indicating their important role in regeneration. Hence, LDP/OC cells may provide a valuable tool to study cell interactions and the role on HNE in liver regeneration.
Źródło:
Acta Biochimica Polonica; 2010, 57, 2; 185-191
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lipid peroxidation product 4-hydroxynonenal as factor of oxidative homeostasis supporting bone regeneration with bioactive glasses
Autorzy:
Mrakovcic, Lidija
Wildburger, Renate
Jaganjac, Morana
Cindric, Marina
Cipak, Ana
Borovic-Sunjic, Suzana
Waeg, Georg
Milankovic, Andrea
Zarkovic, Neven
Powiązania:
https://bibliotekanauki.pl/articles/1040400.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
bone regeneration
4-hydroxynonenal
bioactive glass
oxidative homeostasis
lipid peroxidation
Opis:
Bone regeneration is a process of vital importance since fractures of long bones and large joints have a highly deleterious impact on both, individuals and society. Numerous attempts have been undertaken to alleviate this severe medical and social problem by development of novel bioactive materials, among which bioactive glass is the most attractive because of its osteoconductive and osteostimulative properties. Since lipid peroxidation is an important component of systematic stress response in patients with traumatic brain injuries and bone fractures, studies have been undertaken of the molecular mechanisms of the involvement of 4-hydroxynonenal (HNE), an end product of lipid peroxidation, in cellular growth regulation. We found that HNE generated in bone cells grown in vitro on the surfaces of bioactive glasses 45S5 and 13-93. This raises an interesting possibility of combined action of HNE and ionic bioglass dissolution products in enhanced osteogenesis probably through a mitogen-activated protein kinase (MAPK) pathway. While the proposed mechanism still has to be elucidated, the finding of HNE generation on bioglass offers a new interpretation of the osteoinducting mechanisms of bioglass and suggests the possibility of tissue engineering based on manipulations of oxidative homeostasis.
Źródło:
Acta Biochimica Polonica; 2010, 57, 2; 173-178
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies