Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ciborowski, Michal" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Peroxynitrite can affect platelet responses by inhibiting energy production
Autorzy:
Rusak, Tomasz
Tomasiak, Marian
Ciborowski, Michal
Powiązania:
https://bibliotekanauki.pl/articles/1041172.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
aggregation
porcine platelets
peroxynitrite
mitochondria
glycolysis
secretion
Opis:
Peroxynitrite (ONOO-) strongly inhibits agonist-induced platelet responses. However, the mechanisms involved are not completely defined. Using porcine platelets, we tested the hypothesis that ONOO- reduces platelet aggregation and dense granule secretion by inhibiting energy production. It was found that ONOO- (25-300 µM) inhibited collagen-induced dense granule secretion (IC50 = 55 ± 7 µM) more strongly than aggregation (IC50 = 124 ± 16 µM). The antiaggregatory and antisecretory effects of ONOO- were only slightly (5-10%) reduced by 1H-[1,2,4]-oxadiazolo-[4,3-α]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. In resting platelets ONOO- (50-300 µM) enhanced glycolysis rate and reduced oxygen consumption, in a dose dependent manner. The ONOO- effects on glycolysis rate and oxygen consumption were not abolished by ODQ. The extent of glycolysis stimulation exerted by ONOO- was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or an uncoupler (2,4-dinitrophenol). Stimulation of platelets by collagen was associated with a rise in mitochondrial oxygen consumption, accelerated lactate production, and unchanged intracellular ATP content. In contrast to resting cells, in collagen-stimulated platelets, ONOO- (200 µM) distinctly decreased the cellular ATP content. The glycolytic activity and oxygen consumption of resting platelets were not affected by 8-bromoguanosine 3',5'-cyclic monophosphate. Blocking of the mitochondrial ATP production by antimycin A slightly reduced collagen-induced aggregation and strongly inhibited dense granule secretion. Treatment of platelets with ONOO- (50-300 µM) resulted in decreased activities of NADH : ubiquinone oxidoreductase, succinate dehydrogenase and cytochrome oxidase. It is concluded that the inhibitory effect of ONOO- on platelet secretion and to a lesser extent on aggregation may be mediated, at least in part, by the reduction of mitochondrial energy production.
Źródło:
Acta Biochimica Polonica; 2006, 53, 4; 769-776
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The role of Na+/H+ exchanger in serotonin secretion from porcine blood platelets
Autorzy:
Tomasiak, Marian
Ciborowski, Michal
Stelmach, Halina
Powiązania:
https://bibliotekanauki.pl/articles/1041323.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
platelet swelling
platelet secretion
serotonin release
Na+/H+ exchanger
platelets
Opis:
This study was undertaken to evaluate whether a link exists between the activation of protein kinase C (PKC), operation of Na+/H+ exchanger (NHE), cell swelling and serotonin (5-HT) secretion in porcine platelets. Activation of platelets by thrombin or phorbol 12-myristate 13-acetate (PMA), a PKC activator, initiated a rapid rise in the activity of Na+/H+ exchanger and secretion of 5-HT. Both thrombin- and PMA-evoked activation of Na+/H+ exchanger was less pronounced in the presence of ethyl-isopropyl-amiloride (EIPA), an NHE inhibitor, and by GF 109203X, a PKC inhibitor. Monensin (simulating the action of NHE) caused a dose-dependent release of 5-HT that was not abolished by GF 109203X or EGTA. Lack of Na+ in the suspending medium reduced thrombin-, PMA-, and monensin-evoked 5-HT secretion. GF 109203X nearly completely inhibited 5-HT release induced by PMA-, partly that induced by thrombin, and had no effect on 5-HT release induced by monensin. EIPA partly inhibited 5-HT release induced by thrombin and nearly totally that evoked by PMA. Electronic cell sizing measurements showed an increase in mean platelet volume upon treatment of cells with monensin, PMA or thrombin. The PMA- and thrombin-evoked rise in mean platelet volume was strongly reduced in the presence of EIPA. As judged by optical swelling assay monensin and PMA produced a rapid rise in platelet volume. The swelling elicited by PMA was inhibited by EIPA and its kinetics was similar to that observed in the presence of monensin. Hypoosmotically evoked platelet swelling did not affect platelet aggregation but significantly potentiated thrombin-evoked release of 5-HT and ATP. Taken together, these results show that in porcine platelets PKC may promote 5-HT secretion through the activation of NHE. It is hypothesized that enhanced Na+/H+ antiport may result in a rise in cell membrane tension (due to cell swelling) which in turn facilitates fusion of secretory granules with the plasma membrane leading to 5-HT secretion.
Źródło:
Acta Biochimica Polonica; 2005, 52, 4; 811-822
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The involvement of Na+/K+-ATPase in the development of platelet procoagulant response
Autorzy:
Tomasiak, Marian
Stelmach, Halina
Rusak, Tomasz
Ciborowski, Michał
Radziwon, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1041052.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
cardiac glycosides
ouabain
Na+/K+-ATPase
atrial fibrillation
platelets
procoagulant activity
Opis:
In circulation, platelets may come into contact with both exogenous (cardiac glycoside treatment) and endogenously produced inhibitors of Na+/K+-ATPase. We examined whether blocking of platelet Na+/K+-ATPase by ouabain results in generation of procoagulant activity. It was shown that an in vitro treatment of platelets with ouabain (20-200 µM for 20 to 60 min) is associated with an intracellular accumulation of sodium ([Na+]i), generation of a weak calcium signal, and expression of procoagulant activity. The ouabain-induced procoagulant response was dose- and time-related, less pronounced than that evoked by collagen and similar to that produced by gramicidin, not affected by EDTA or aspirin, and strongly reduced in the absence of extracellular Na+ or by hyperosmolality. Flow cytometry studies revealed that ouabain treatment results in a unimodal left shift in the forward and side scatter of the entire platelet population indicating morphological changes of the plasma membrane. The shift was dose related, weaker than that evoked by collagen and similar to that produced by gramicidin. Ouabain-treated platelets express phosphatidylserine (PS). The ouabain-evoked PS expression was dose- and time-dependent, weaker than that produced by collagen and similar to that evoked by gramicidin. Electronic cell sizing measurements showed a dose-dependent increase in mean platelet volume upon treatment with ouabain. Hypoosmotically-evoked platelet swelling resulted in the appearance of procoagulant activity. Thromboelastography measurements indicate that, in whole blood, nanomolar (50-1000 nM, 15 min) concentrations of ouabain significantly accelerate the rate of clot formation initiated by contact and high extracellular concentration of calcium. We conclude that inefficiently operating platelet Na+/K+-ATPase results in a rise in [Na+]i. An increase in [Na+]i and the swelling associated with it may produce PS exposure and a rise in membrane curvature leading to the generation of a procoagulant activity.
Źródło:
Acta Biochimica Polonica; 2007, 54, 3; 625-639
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies