Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chutia, Muhim" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Effects of the porous boundary and inclined magnetic field on MHD flow in a rectangular duct
Autorzy:
Chutia, Muhim
Powiązania:
https://bibliotekanauki.pl/articles/1839735.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
MHD
rectangular duct
porous boundary
inclined magnetic field
finite difference method
kanał prostokątny
ułamkowe równanie różniczkowe
pochodna ułamkowa
Opis:
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangular duct under the action of an inclined magnetic field with a porous boundary has been investigated. The coupled partial differential equations are transformed into a system of algebraic equations using the finite difference method and are then solved simultaneously using the Gauss Seidal iteration method by programming in Matlab software. Numerical solutions for velocity, induced magnetic field and current density lines are obtained and analyzed for different values of dimensionless parameters namely suction/injection parameter (S), Hartmann number (M) and inclination angle (θ) and are presented graphically.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 4; 33-44
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of the porous boundary and inclined magnetic field on MHD flow in a rectangular duct
Autorzy:
Chutia, Muhim
Powiązania:
https://bibliotekanauki.pl/articles/1839745.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
MHD
rectangular duct
porous boundary
inclined magnetic field
finite difference method
kanał prostokątny
ułamkowe równanie różniczkowe
pochodna ułamkowa
Opis:
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangular duct under the action of an inclined magnetic field with a porous boundary has been investigated. The coupled partial differential equations are transformed into a system of algebraic equations using the finite difference method and are then solved simultaneously using the Gauss Seidal iteration method by programming in Matlab software. Numerical solutions for velocity, induced magnetic field and current density lines are obtained and analyzed for different values of dimensionless parameters namely suction/injection parameter (S), Hartmann number (M) and inclination angle (θ) and are presented graphically.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 4; 33-44
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical solution of MHD channel flow in a porous medium with uniform suction and injection in the presence of an inclined magnetic field
Autorzy:
Chutia, Muhim
Powiązania:
https://bibliotekanauki.pl/articles/2175529.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
MHD flow
Brinkman equation
permeability parameter
Hartmann number
uniform suction and injection
finite difference method
przepływ MHD
równanie Brinkmana
parametr przepuszczalności
liczba Hartmanna
równomierne ssanie i wtrysk
metoda różnic skończonych
Opis:
In this paper, the steady fully developed MHD flow of a viscous incompressible electrically conducting fluid through a channel filled with a porous medium and bounded by two infinite walls is investigated numerically for the cases (i) Poiseuille flow and (ii) Couette-Poiseuille flow; with uniform suction and injection at the walls in the presence of an inclined magnetic field. The Brinkman equation is used for the flow in the porous channel and solved numerically using the finite difference method. Numerical results are obtained for velocity. The effects of various dimensionless parameters such as Hartmann number (M), suction/injection parameter (S), permeability parameter (α) and angle of inclination (θ) on the flow are discussed and presented graphically.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 2; 5--13
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies