Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chimayati, Rachmi Layina" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Removal of Salinity using Interaction Mangrove Plants and Bacteria in Batch Reed Bed System Reactor
Autorzy:
Chimayati, Rachmi Layina
Titah, Harmin Sulistiyaning
Powiązania:
https://bibliotekanauki.pl/articles/125258.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
bio-desalination
mangrove
bacteria
reed bed system
Opis:
The current method of seawater bio-desalination can effectively provide freshwater. This method works by separating the salt contained in water into clean water with a lower salinity. In this study, the researchers conducted an experiment of the bio-desalination method by combining mangrove plant and Vibrio alginolyticus bacteria as well as the presence of a filter layer component composed of sand and gravel in red beed system reactor. The concept of phytotechnology was to utilize plants as environmental technology capable of solving environmental problems. In contrast, the term phytoremediation was used to denote the process of plants absorb, take, change and release contaminants from one medium to another. The purpose of this study was to determine the reduction of salinity on the mangrove plant Rhizophora mucronata (Rm) and Avicennia marina (Am) with the addition of Vibrio alginolyticus (Va) bacteria in the bio-desalination process using a reed bed system. This study combines plants and bacteria for artificial saline desalination processes. The compounds contained in plants are absorbed in the form of cations or anions, while the addition of the bacteria was carried out to support the process of salt absorption in plants. The results of this study indicated a percentage of salinity decreasing up to the last day of experiment. The results showed the percentage of salinity removal at the last day reaching 49.16%, and 40.58% in reed bed reactor with Avecennia marina and Vibrio alginolyticus of 15‰ and 25‰, respectively. Meanwhile, the percentage of salinity using Rhizophora mucronata showed 64.68% and 40.18% in in reed bed reactor with Rhizophora mucronata and Vibrio alginolyticus of 15‰ and 25‰, respectively. The removal of salinity also occured in the control reactor, containing only reed bed system without plant, reaching 57.36% and 58.41% in initial salinity of 15‰ and 25‰. All treatment reactors exhibited high salinity removal. It showed that the all concentrations of salinity were below 4‰ at Day 2 of reactor operation. It suggested that the process of desalination occurred in the entire reactor treatment. In conclusion, the reed bed system reactor can be used to treat saline water but the process of absorption of salts with mangrove plant and addition of Vibrio alginolyticus can be more stable.
Źródło:
Journal of Ecological Engineering; 2019, 20, 4; 84-93
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preliminary Phytotoxicity Test on Salinity Against Mangrove Plants of Rhizophora mucronata
Autorzy:
Titah, Harmin Sulistiyaning
Purwanti, Ipung Fitri
Pratikno, Herman
Chimayati, Rachmi Layina
Handayanu, -
Powiązania:
https://bibliotekanauki.pl/articles/952465.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
bio-desalination
brackish water
mangrove
salinity
preliminary phytotoxicity
Opis:
The phytotechnology concept that is applied for a bio-desalination reactor become a new desalination technology. The desalination technology can be called as bio-desalination technology to remove ions of Na+ and Cl- in brackish or saline water using mangrove plant. Before the mangrove plants were used in bio-desalination technology, the preliminary phytotoxicity test was conducted. The purpose was to determine the salinity concentration at which the mangrove species of Rhizophora mucronata can survive. The preliminary phytotoxicty test was carried out using a plastic reactor that was designed as a reed bed system. The reactors filled with gravel, sand, and artificial saline water. The variation of the NaCl concentrations were 0 mg/L as control, 10,000; 20,000; 30,000; 40,000, and 50,000 mg/L. The physical observation of the survival condition of Rhizophora mucronata was carried out during the preliminary test for 7 days. The analysis of Scanning Electron Microscopy (SEM) on Rhizophora mucronata was conducted at the end of exposure. The results showed that Rhizophora mucronata could not survive at the concentrations of 40,000 and 50,000 mg/L. Rhizophora mucronata changed the color of the leaves to brown and the stems become softer. Multiple cell damage and the decreasing trend of sodium and chloride amounts occured on roots and stems at the salinity concentration of 50,000 mg/L. In conclusion, the high of salinity concentration (> 30,000 mg/L) can be toxic to Rhizophora mucronata.
Źródło:
Journal of Ecological Engineering; 2019, 20, 3; 126-134
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies