- Tytuł:
-
Prediction model of public houses’ heating systems:a comparison of support vector machine methodand random forest method
Model prognozowania systemów grzewczych budynków użyteczności publicznej: porównanie metody support vector machine i random forest - Autorzy:
-
Perekrest, Andrii
Chenchevoi, Vladimir
Chencheva, Olga
Kovalenko, Alexandr
Kushch-Zhyrko, Mykhailo
Kalizhanova, Aliya
Amirgaliyev, Yedilkhan - Powiązania:
- https://bibliotekanauki.pl/articles/2174707.pdf
- Data publikacji:
- 2022
- Wydawca:
- Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
- Tematy:
-
building heat supply
random forest
support vector machine
zaopatrzenie w ciepło budynku
metoda wektorów wspierających - Opis:
-
Data analysis and predicting play an important role in managing heat-supplying systems. Applying the models of predicting the systems’ parameters is possible for qualitative management, accepting appropriate decisions relating control that will be aimed at increasing energy efficiency and decreasing the amount of the consumed power source, diagnosing and defining non-typical processes in the functioning of the systems. The article deals with comparing two methods of ma-chine learning: random forest (RF) and support vector machine (SVM) for predicting the temperature of the heat-carrying agent in the heating system based on the data of electronic weather-dependent controller. The authors use the following parameters to compare the models: accuracy, source cost and the opportunity to interpret the results and non-obvious interrelations. The time spent for defining the optimal hyperparameters and conducting the SVM model training is deter-mined to exceed significantly the data of the RF parameter despite the close meanings of the root mean square error (RMSE). The change from 15-min data to once-a-minute ones is done to improve the RF model accuracy. RMSE of the RF model on the test data equals 0.41°С. The article studies the importance of the contribution of variables to the prediction accuracy.
Analiza danych i prognozowanie odgrywają ważną rolę w zarządzaniu systemami zaopatrzenia w ciepło. Wykorzystanie modeli do przewidywania parametrów systemu jest możliwe do zarządzania jakością, podejmowania odpowiednich decyzji sterujących, które będą miały na celu poprawę efektywności energetycznej i zmniejszenie ilości zużywanego źródła energii elektrycznej, diagnozowania i wykrywania nietypowych procesów w funkcjonowaniu systemu. W artykule porównano dwie metody uczenia maszynowego: Random Forest (RF) i Support Vector Machine (SVM) do przewidywania temperatury czynnika grzewczego w systemie grzewczym na podstawie danych elektronicznego regulatora pogodowego. Do porównania modeli autorzy wykorzystują następujące parametry: dokładność, koszt początkowy oraz możliwość interpretacji wyników i nieoczywistych zależności. Ustalono, że czas poświęcony na wyznaczenie optymalnych hiperparametrów i wytrenowanie modelu SVM znacznie przekracza dane parametru RF, pomimo zbliżonych wartości błędu średniokwadratowego (RMSE). Zmiana z danych 15-minutowych na dane raz na minutę została dokonana w celu poprawy dokładności modelu RF. RMSE modelu RF z danych testowych wynosi 0,41°C. W pracy zbadano znaczenie wkładu zmiennych w dokładność prognozy. - Źródło:
-
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2022, 12, 3; 34--39
2083-0157
2391-6761 - Pojawia się w:
- Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
- Dostawca treści:
- Biblioteka Nauki