Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cheikhi, Laila" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review
Autorzy:
Elmidaoui, Sara
Cheikhi, Laila
Idri, Ali
Abran, Alain
Powiązania:
https://bibliotekanauki.pl/articles/384171.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
systematic mapping study
systematic literature review
software product maintainability
empirical studies
Opis:
Background: Software product maintainability prediction (SPMP) is an important task to control software maintenance activity, and many SPMP techniques for improving software maintainability have been proposed. In this study, we performed a systematic mapping and review on SPMP studies to analyze and summarize the empirical evidence on the prediction accuracy of SPMP techniques in current research. Objective: The objective of this study is twofold: (1) to classify SPMP studies reported in the literature using the following criteria: publication year, publication source, research type, empirical approach, software application type, datasets, independent variables used as predictors, dependent variables (e.g. how maintainability is expressed in terms of the variable to be predicted), tools used to gather the predictors, the successful predictors and SPMP techniques, (2) to analyze these studies from three perspectives: prediction accuracy, techniques reported to be superior in comparative studies and accuracy comparison of these techniques. Methodology: We performed a systematic mapping and review of the SPMP empirical studies published from 2000 up to 2018 based on an automated search of nine electronic databases. Results: We identified 82 primary studies and classified them according to the above criteria. The mapping study revealed that most studies were solution proposals using a history-based empirical evaluation approach, the datasets most used were historical using object-oriented software applications, maintainability in terms of the independent variable to be predicted was most frequently expressed in terms of the number of changes made to the source code, maintainability predictors most used were those provided by Chidamber and Kemerer (C&K), Li and Henry (L&H) and source code size measures, while the most used techniques were ML techniques, in particular artificial neural networks. Detailed analysis revealed that fuzzy & neuro fuzzy (FNF), artificial neural network (ANN) showed good prediction for the change topic, while multilayer perceptron (MLP), support vector machine (SVM), and group method of data handling (GMDH) techniques presented greater accuracy prediction in comparative studies. Based on our findings SPMP is still limited. Developing more accurate techniques may facilitate their use in industry and well-formed, generalizable results be obtained. We also provide guidelines for improving the maintainability of software.
Źródło:
e-Informatica Software Engineering Journal; 2019, 13, 1; 141-202
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies