Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chang, O." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A novel deep neural network that uses space-time features for tracking and recognizing a moving object
Autorzy:
Chang, O.
Constante, P.
Gordon, A.
Singaña, M.
Powiązania:
https://bibliotekanauki.pl/articles/91702.pdf
Data publikacji:
2017
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
deep architectures
deep learning
artificial vision
Opis:
This work proposes a deep neural net (DNN) that accomplishes the reliable visual recognition of a chosen object captured with a webcam and moving in a 3D space. Autoencoding and substitutional reality are used to train a shallow net until it achieves zero tracking error in a discrete ambient. This trained individual is set to work in a real world closed loop system where images coming from a webcam produce displacement information for a moving region of interest (ROI) inside the own image. This loop gives rise to an emergent tracking behavior which creates a self-maintain flow of compressed space-time data. Next, short term memory elements are set to play a key role by creating new representations in terms of a space-time matrix. The obtained representations are delivery as input to a second shallow network which acts as ”recognizer”. A noise balanced learning method is used to fast train the recognizer with real-world images, giving rise to a simple and yet powerful robotic eye, with a slender neural processor that vigorously tracks and recognizes the chosen object. The system has been tested with real images in real time.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2017, 7, 2; 125-136
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficient online handwritten Chinese character recognition system using a two-dimensional functional relationship model
Autorzy:
Chang, Y. F.
Lee, J. C.
Mohd Rijal, O.
Syed Abu Bakar, S. A. R.
Powiązania:
https://bibliotekanauki.pl/articles/908140.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
2D
współczynnik determinacji
rozpoznawanie
pismo odręczne
pismo chińskie
falka Haara
model relacyjny
2D functional classifier
coefficient of determination
handwritten Chinese character recognition
Haar wavelet
multidimensional functional relationship model
Opis:
This paper presents novel feature extraction and classification methods for online handwritten Chinese character recognition (HCCR). The X-graph and Y-graph transformation is proposed for deriving a feature, which shows useful properties such as invariance to different writing styles. Central to the proposed method is the idea of capturing the geometrical and topological information from the trajectory of the handwritten character using the X-graph and the Y-graph. For feature size reduction, the Haar wavelet transformation was applied on the graphs. For classification, the coefficient of determination [...] from the two-dimensional unreplicated linear functional relationship model is proposed as a similarity measure. The proposed methods show strong discrimination power when handling problems related to size, position and slant variation, stroke shape deformation, close resemblance of characters, and non-normalization. The proposed recognition system is applied to a database with 3000 frequently used Chinese characters, yielding a high recognition rate of 97.4% with reduced processing time of 75.31%, 73.05%, 58.27% and 40.69% when compared with recognition systems using the city block distance with deviation (CBDD), the minimum distance (MD), the compound Mahalanobis function (CMF) and the modified quadratic discriminant function (MQDF), respectively. High precision rates were also achieved.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 4; 727-738
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies