Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bucko, Jozef" wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Uniquely partitionable planar graphs with respect to properties having a forbidden tree
Autorzy:
Bucko, Jozef
Ivančo, Jaroslav
Powiązania:
https://bibliotekanauki.pl/articles/744245.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
uniquely partitionable planar graphs
forbidden graphs
Opis:
Let ₁, ₂ be graph properties. A vertex (₁,₂)-partition of a graph G is a partition {V₁,V₂} of V(G) such that for i = 1,2 the induced subgraph $G[V_i]$ has the property $_i$. A property ℜ = ₁∘₂ is defined to be the set of all graphs having a vertex (₁,₂)-partition. A graph G ∈ ₁∘₂ is said to be uniquely (₁,₂)-partitionable if G has exactly one vertex (₁,₂)-partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.
Źródło:
Discussiones Mathematicae Graph Theory; 1999, 19, 1; 71-78
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniquely partitionable graphs
Autorzy:
Bucko, Jozef
Frick, Marietjie
Mihók, Peter
Vasky, Roman
Powiązania:
https://bibliotekanauki.pl/articles/972032.pdf
Data publikacji:
1997
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property of graphs
additivity
reducibility
vertex partition
Opis:
Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition of the vertex set V(G) into subsets V₁, ...,Vₙ such that the subgraph $G[V_i]$ induced by $V_i$ has property $_i$; i = 1,...,n. A graph G is said to be uniquely (₁, ...,ₙ)-partitionable if G has exactly one (₁,...,ₙ)-partition. A property is called hereditary if every subgraph of every graph with property also has property . If every graph that is a disjoint union of two graphs that have property also has property , then we say that is additive. A property is called degenerate if there exists a bipartite graph that does not have property . In this paper, we prove that if ₁,..., ₙ are degenerate, additive, hereditary properties of graphs, then there exists a uniquely (₁,...,ₙ)-partitionable graph.
Źródło:
Discussiones Mathematicae Graph Theory; 1997, 17, 1; 103-113
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On uniquely partitionable relational structures and object systems
Autorzy:
Bucko, Jozef
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743971.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
digraph
hypergraph
vertex colouring
uniquely partitionable system
Opis:
We introduce object systems as a common generalization of graphs, hypergraphs, digraphs and relational structures. Let C be a concrete category, a simple object system over C is an ordered pair S = (V,E), where E = {A₁,A₂,...,Aₘ} is a finite set of the objects of C, such that the ground-set $V(A_i)$ of each object $A_i ∈ E$ is a finite set with at least two elements and $V ⊇ ⋃_{i=1}^m V(A_i)$. To generalize the results on graph colourings to simple object systems we define, analogously as for graphs, that an additive induced-hereditary property of simple object systems over a category C is any class of systems closed under isomorphism, induced-subsystems and disjoint union of systems, respectively. We present a survey of recent results and conditions for object systems to be uniquely partitionable into subsystems of given properties.
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 2; 281-289
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On infinite uniquely partitionable graphs and graph properties of finite character
Autorzy:
Bucko, Jozef
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743160.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph property of finite character
reducibility
uniquely partitionable graphs
weakly universal graph
Opis:
A graph property is any nonempty isomorphism-closed class of simple (finite or infinite) graphs. A graph property is of finite character if a graph G has a property if and only if every finite induced subgraph of G has a property . Let ₁,₂,...,ₙ be graph properties of finite character, a graph G is said to be (uniquely) (₁, ₂, ...,ₙ)-partitionable if there is an (exactly one) partition {V₁, V₂, ..., Vₙ} of V(G) such that $G[V_i] ∈ _i$ for i = 1,2,...,n. Let us denote by ℜ = ₁ ∘ ₂ ∘ ... ∘ ₙ the class of all (₁,₂,...,ₙ)-partitionable graphs. A property ℜ = ₁ ∘ ₂ ∘ ... ∘ ₙ, n ≥ 2 is said to be reducible. We prove that any reducible additive graph property ℜ of finite character has a uniquely (₁, ₂, ...,ₙ)-partitionable countable generating graph. We also prove that for a reducible additive hereditary graph property ℜ of finite character there exists a weakly universal countable graph if and only if each property $_i$ has a weakly universal graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 241-251
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Note on partitions of planar graphs
Autorzy:
Broere, Izak
Wilson, Bonita
Bucko, Jozef
Powiązania:
https://bibliotekanauki.pl/articles/744336.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graph
hereditary property of graphs
forest and triangle-free graph
Opis:
Chartrand and Kronk in 1969 showed that there are planar graphs whose vertices cannot be partitioned into two parts inducing acyclic subgraphs. In this note we show that the same is true even in the case when one of the partition classes is required to be triangle-free only.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 211-215
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties
Autorzy:
Broere, Izak
Bucko, Jozef
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743535.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary properties
reducibility
divisibility
uniquely partitionable graphs.
Opis:
Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition {V₁,V₂,...,Vₙ} of V(G) such that $G[V_i] ∈ _i$ for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if $_i$ and $_j$ are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ {1,2,...,n}.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 31-37
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on maximal common subgraphs of the Diracs family of graphs
Autorzy:
Bucko, Jozef
Mihók, Peter
Saclé, Jean-François
Woźniak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/744168.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
maximal common subgraph
Dirac's family
Hamiltonian cycle
Opis:
Let ⁿ be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set ⁿ is a common subgraph F of order n of each member of ⁿ, that is not properly contained in any larger common subgraph of each member of ⁿ. By well-known Dirac's Theorem, the Dirac's family ⁿ of the graphs of order n and minimum degree δ ≥ [n/2] has a maximal common subgraph containing Cₙ. In this note we study the problem of determining all maximal common subgraphs of the Dirac's family $ ^{2n}$ for n ≥ 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 3; 385-390
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies