Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Brocki, Ł." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Deep Belief Neural Networks and Bidirectional Long-Short Term Memory Hybrid for Speech Recognition
Autorzy:
Brocki, Ł.
Marasek, K.
Powiązania:
https://bibliotekanauki.pl/articles/177625.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep belief neural networks
long-short term memory
bidirectional recurrent neural networks
speech recognition
large vocabulary continuous speech recognition
Opis:
This paper describes a Deep Belief Neural Network (DBNN) and Bidirectional Long-Short Term Memory (LSTM) hybrid used as an acoustic model for Speech Recognition. It was demonstrated by many independent researchers that DBNNs exhibit superior performance to other known machine learning frameworks in terms of speech recognition accuracy. Their superiority comes from the fact that these are deep learning networks. However, a trained DBNN is simply a feed-forward network with no internal memory, unlike Recurrent Neural Networks (RNNs) which are Turing complete and do posses internal memory, thus allowing them to make use of longer context. In this paper, an experiment is performed to make a hybrid of a DBNN with an advanced bidirectional RNN used to process its output. Results show that the use of the new DBNN-BLSTM hybrid as the acoustic model for the Large Vocabulary Continuous Speech Recognition (LVCSR) increases word recognition accuracy. However, the new model has many parameters and in some cases it may suffer performance issues in real-time applications.
Źródło:
Archives of Acoustics; 2015, 40, 2; 191-195
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System for Automatic Transcription of Sessions of the Polish Senate
Autorzy:
Marasek, K.
Koržinek, D.
Brocki, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/176798.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
large vocabulary speech recognition
language modeling
transcription
transliteration
subtitles
Opis:
This paper describes research behind a Large-Vocabulary Continuous Speech Recognition (LVCSR) system for the transcription of Senate speeches for the Polish language. The system utilizes several components: a phonetic transcription system, language and acoustic model training systems, a Voice Activity Detector (VAD), a LVCSR decoder, and a subtitle generator and presentation system. Some of the modules relied on already available tools and some had to be made from the beginning but the authors ensured that they used the most advanced techniques they had available at the time. Finally, several experiments were performed to compare the performance of both more modern and more conventional technologies.
Źródło:
Archives of Acoustics; 2014, 39, 4; 501-509
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies