Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bloom, Steven" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
First and second order Opial inequalities
Autorzy:
Bloom, Steven
Powiązania:
https://bibliotekanauki.pl/articles/1219071.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
Let $T_γ f(x) = ʃ_0^x k(x,y)^γ f(y)dy$, where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form $ʃ_0^∞ (∏_{i=1}^n |T_{γ_i}f(x)|^{q_i}|) |f(x)|^{q_0} w(x)dx ≤ C(ʃ_0^∞ |f(x)|^p v(x)dx)^{(q_0+…+q_n)/p}$. Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent $q_0 = 0$. When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold.
Źródło:
Studia Mathematica; 1997, 126, 1; 27-50
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted $L_{Φ}$ integral inequalities for operators of Hardy type
Autorzy:
Bloom, Steven
Kerman, Ron
Powiązania:
https://bibliotekanauki.pl/articles/1290318.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for $Φ_2^{-1} (ʃΦ_2(w(x)|Tf(x)|)t(x)dx) ≤ Φ_{1}^{-1}(ʃΦ_{1}(Cu(x)|f(x)|)v(x)dx)$ to hold when $Φ_1$ and $Φ_2$ are N-functions with $Φ_2∘Φ_{1}^{-1}$ convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
Źródło:
Studia Mathematica; 1994, 110, 1; 35-52
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies