Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bilushchak, Y." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Mathematical modeling of random concentracion field and its second moments in semispace with Erlangian distributions of layerd inclusions
Autorzy:
Chernukha, O.
Bilushchak, Y.
Powiązania:
https://bibliotekanauki.pl/articles/1938608.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska
Tematy:
diffusion process
randomly inhomogeneous stratified structure
Erlangian distribution
field dispersion
correlation function
Neumann series
averaging over the ensemble of phase configurations
Opis:
The processes of admixture diffusion in a two-phase stratified semispace with random disposition of syblayers are studied by the approach where internal random nonhomogeneities are considered as inner sources and the solution is found in the form of a Neumann series. The diffusion equations are formulated for one-connected regions of each phase and non-ideal contact conditions for the concentration on interphases are imposed. By the theory of generalized functions the contact problem is reduced to the equation of mass transfer in the whole body, which operator includes explicitly jump discontinuities of the concentration function and its derivatives. The obtained initial-boundary value problem of mass transfer is reduced to the equivalent integro-differentual equation. The solution is constructed in the form of a Neumann series and averaged over the ensemble of phase configurations with Erlangian and exponential distributions of inclusions. Dispersion and the two-point correlation function of the concentration field for diffusion are determined taking into account the probable distribution of inclusions, pair interaction of sublayers and the function of phase correlation. The dependence of the behavior of the averaged admixture concentration, field dispersion and the correlation function in the semispace with Erlangian and exponential distributions of inclusions on different medium characteristics is investigated and established.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2016, 20, 3; 295-334
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies