Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Białecki, T." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Measurement of exhaust gas emissions from miniature turbojet engine
Autorzy:
Gawron, B.
Białecki, T.
Powiązania:
https://bibliotekanauki.pl/articles/133535.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
combustion process
effect on environment
exhaust gas emission
miniature turbojet engine
proces spalania
wpływ na środowisko
emisja spalin
miniaturowe silniki turboodrzutowe
Opis:
This paper presents a methodology developed to measure exhaust gas emissions during operation of a miniature turbojet engine, using a laboratory test rig. The rig has been built for research and development works aimed at modelling and investigating processes and phenomena occurring in jet engines. The miniature jet engines, similarly to full–scale ones used commonly in air transport, are characterized by variable exhaust gas emissions, depending on engine operating parameters. For this reason, an attempt has been made to determine the characteristic features of miniature engine operation modes and to define the variability of operation parameters and exhaust gas emissions as a function of time. According to the authors, the preliminary tests allowed for defining specific profile of engine test, which enables proper measurement regarding exhaust gas emissions using the miniature jet engine. The paper also presents test results for Jet A-1 fuel, according to the used methodology.
Źródło:
Combustion Engines; 2016, 55, 4; 58-63
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of adding 2-ethylhexanol to jet fuel on the performance and combustion characteristics of a miniature turbojet engine
Autorzy:
Gawron, B.
Białecki, T.
Król, A.
Powiązania:
https://bibliotekanauki.pl/articles/247180.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
alternative fuels
alcohol to jet
combustion process
miniature jet engine
exhaust emission
paliwa alternatywne
proces spalania
miniaturowy silnik odrzutowy
emisja spalin
Opis:
There are currently many studies undergoing in the field of using alternative fuels for supplying different types of propulsion units. The ASTM standard in the aerospace industry, allows using five different technologies of manufacturing synthetic components apart from standard oil-based fuel for the propulsion of turbine engines (as a blend up to 50% with conventional fuel). One of these is a technology associated with the process of converting alcohols (isobutanol) to jet fuel – Alcohol to Jet (ATJ). In the research performance, emission parameters were measured on laboratory test rig with miniature turbojet engine (MiniJETRig). The test rig has been created in Air Force Institute of Technology for research and development works aimed at alternative fuels for aviation. The miniature engine was fuelled with conventional jet fuel – Jet A-1 and blend of Jet A-1 with 2-ethylhexanol. The results for this blend were compared with the results obtained for neat Jet A-1 fuel in terms of different engine operating modes, according to specified methodology. The conducted tests did not show significant differences in engine operating parameters (thrust, fuel consumption and thrust specific fuel consumption) and the values of CO, CO2 and NOx emission indices between the tested fuels. The engine tests took place in similar ambient conditions. Laboratory tests of selected physicochemical properties were also carried out for both fuel samples.
Źródło:
Journal of KONES; 2018, 25, 1; 101-109
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance and emission characteristic of miniature turbojet engine FED Jet A-1/alcohol blend
Autorzy:
Gawron, B.
Białecki, T.
Dzięgielewski, W.
Kaźmierczak, U.
Powiązania:
https://bibliotekanauki.pl/articles/244998.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
miniature jet engine
alternative fuels
exhausts emission
Opis:
This paper presents differences between fossil fuel (Jet A-1) and alcohol/Jet A-1 blend, during combustion process using laboratory test rig with miniature turbojet engine (MiniJETRig). The test rig has been created in Air Force Institute of Technology for research and development works aimed at alternative fuels for aviation. Fuel from different feedstock (non-fossil sources) is introduced into market due to ecological aspects, fuel price stability and energy security. Application of alcohol to propel aircraft has started form using a blend of aviation gasoline with ethanol in spark-ignited internal-combustion engines. Taking into account that large part of aviation fuels used by commercial aircraft is jet fuels, so in this area it has begun to look for possibilities to apply alcohol component. In 2016, international standard (ASTM) approved a synthetic blending component for aviation turbine fuels for use in civil aircraft and engines – alcohol-to-jet synthetic paraffinic kerosene (ATJ-SPK). According to standard, ATJ-SPK synthetic blending components shall be comprised hydro processed synthetic paraffinic kerosene wholly derived from isobutanol processed through dehydration, oligomerization, hydrogenation and fractionation. Two different fuel samples, a traditional fossil jet fuel (Jet A-1) and a blend of 10% butanol with Jet A-1 were tested. Laboratory tests of selected physicochemical properties and bench tests with the same profile of engine test were carry out for both fuel samples. The obtained results: engine parameters and exhaust gas emissions are compared and discussed.
Źródło:
Journal of KONES; 2016, 23, 1; 123-129
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The role of molecularly ordered structures in energy transport enhancement during combustion process : a new conception of a reaction mechanism of fuel components oxidation
Autorzy:
Białecki, T.
Dzięgielewski, W.
Gawron, B.
Kaźmierczak, U.
Kulczycki, A.
Powiązania:
https://bibliotekanauki.pl/articles/245703.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
molecular clusters
turbojet engine
butanol
combustion process
carbon oxide emission
Opis:
This article presents the results of investigations focused on the role of molecularly ordered structures (molecular clusters) on combustion process. The proposed new mechanism of the reactions initiation takes into account the role of molecular clusters in energy (heat and energy of electrons emitted by the surface of the walls of combustion chamber) conductivity regulation. Literature survey shows that molecular clusters created by aromatic hydrocarbons are responsible for particulate matter. The combustion process itself is not uniform in whole combustion chamber. Such diversity, caused mainly by heterogeneous thermal state of combustion chamber is recognized as significant reason to create various products of combustion including carbon oxides, carbon dioxides and nitrogen oxides. Jet fuel and its blends with n-butanol and biobutanol in concentration from 10 to 75 % (V/V) were subjected to laboratory tests. Such blends were also tested on the test rig with a miniature turbojet engine – MiniJETRig. Engine operating parameters and carbon oxide emission were measured. The relations between electrical conductivity and parameters of engine test (e.g. temperature in selected points in combustion chamber) were assessed. Engine tests were carried out according to specific profile of engine test, which models different engine operating modes. The results of experimental investigations, shown in the article, initially confirm the proposed mechanism of the oxidation reactions initiation during combustion process.
Źródło:
Journal of KONES; 2018, 25, 4; 17-24
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emission of volatile organic compounds during combustion process in a miniature turbojet engine
Autorzy:
Janicka, A. B.
Zawiślak, M.
Gawron, B.
Górniak, A.
Białecki, T.
Powiązania:
https://bibliotekanauki.pl/articles/208236.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
turbojet engine
alternative fuels
organic compounds
aviation fuel
volatile organic compounds
silnik turboodrzutowy
paliwa alternatywne
związki organiczne
paliwo lotnicze
lotne związki organiczne
Opis:
Aviation is one of the fastest growing modes of transport. Due to the growing number of flights, the consumption of aviation fuels (mainly jet fuels) keeps increasing. The combustion process in the aircraft engine results in harmful exhaust emissions having an adverse impact on the environment. Alternative fuels based on bio-components and biofuels are a way of reducing the harmful exhaust emissions. Analyses and measurements performed on real aircraft engines are complex and expensive. For this reason, increasingly more research and development projects have been carried out on small-scale engines. This paper presents investigations into volatile organic compound emissions from jet fuel combustion in a miniature turbojet engine. Based on chromatography tests, the compositions of exhaust gases produced by the jet engine fed with various fuels were determined, which in turn led to evaluation of its toxicity and harmfulness. Conventional fossil-based fuel Jet A-1 and a blend of Jet A-1 with 25 vol. % of biobutanol were tested at the same fuel flow rates. The engine working parameters such as, e.g., thrust or emission index have been determined with respect to the type of fuel. The test results have been compared and analyzed.
Źródło:
Environment Protection Engineering; 2018, 44, 4; 57-67
0324-8828
Pojawia się w:
Environment Protection Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of the ASTM D5470 standard test method for thermal conductivity measurements of high thermal conductive materials
Autorzy:
Buliński, Z.
Pawlak, S.
Krysiński, T.
Adamczyk, W.
Białecki, R.
Powiązania:
https://bibliotekanauki.pl/articles/367975.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
thermal conductivity
thermal resistance
steady-state heat transfer
ASTM D5470 standard
przewodność cieplna
opór cieplny
ustalony przepływ ciepła
Opis:
Purpose: The purpose of the present study was to demonstrate the procedure for determining the thermal conductivity of a solid material with relatively high thermal conductivity, using an original self-designed apparatus. Design/methodology/approach: The thermal conductivity measurements have been performed according to the ASTM D5470 standard. The thermal conductivity was calculated from the recorded temperature values in steady-state heat transfer conditions and determined heat flux. Findings: It has been found from the obtained experimental results that the applied standard test method, which was initially introduced for thermal conductivity measurements of thermal interface materials (TIMs), is also suitable for materials with high thermal conductivity, giving reliable results. Research limitations/implications: The ASTM D5470 standard test method for measurement of thermal conductivity usually gives poor results for high conductive materials having thermal conductivity above 100 W/mK, due to problems with measuring heat flux and temperature drop across the investigated sample with reasonably high accuracy. Practical implications: The results obtained for the tested material show that the presented standard test method can also be used for materials with high thermal conductivity, which is of importance either for the industrial or laboratory applications. Originality/value: The thermal conductivity measurements have been carried out using an original self-designed apparatus, which was developed for testing broad range of engineering materials with high accuracy.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 95, 2; 57-63
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies