Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bhirud, Sunil" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Exploring convolutional auto-encoders for representation learning on networks
Autorzy:
Nerurkar, Pranav Ajeet
Chandane, Madhav
Bhirud, Sunil
Powiązania:
https://bibliotekanauki.pl/articles/305489.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
network representation learning
deep learning
graph convolutional neural networks
Opis:
A multitude of important real-world or synthetic systems possess network structures. Extending learning techniques such as neural networks to process such non-Euclidean data is therefore an important direction for machine learning re- search. However, this domain has received comparatively low levels of attention until very recently. There is no straight-forward application of machine learning to network data, as machine learning tools are designed for i:i:d data, simple Euclidean data, or grids. To address this challenge, the technical focus of this dissertation is on the use of graph neural networks for network representation learning (NRL); i.e., learning the vector representations of nodes in networks. Learning the vector embeddings of graph-structured data is similar to embedding complex data into low-dimensional geometries. After the embedding process is completed, the drawbacks associated with graph-structured data are overcome. The current inquiry proposes two deep-learning auto-encoder-based approaches for generating node embeddings. The drawbacks in such existing auto-encoder approaches as shallow architectures and excessive parameters are tackled in the proposed architectures by using fully convolutional layers. Extensive experiments are performed on publicly available benchmark network datasets to highlight the validity of this approach.
Źródło:
Computer Science; 2019, 20 (3); 273-288
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies