- Tytuł:
- Indecomposable projective representations of direct products of finite groups over a ring of formal power series
- Autorzy:
- Barannyk, L. F.
- Powiązania:
- https://bibliotekanauki.pl/articles/951865.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie. Wydawnictwo Uczelniane
- Tematy:
-
finite groups
projective representation
twisted group algebra
grupy skończone
rzutowa reprezentacja - Opis:
- Let F be a field of characteristic p > O, S = F[[X]] the ring of formal power series in the indeterminate X with coefficients in the field F, F* the multiplicative group of F, G = Gp x B a finite group, where Gp is a p-group and B is a p'-group. We give necessary and sufficient conditions for G and F under which there exists a cocycle λ ∈ Z2 (G, F*) such that every indecomposable projective 5-representation of G with the cocycle λ is the outer tensor product of an indecomposable projective 5-representation of Gp and an irreducible projective 5-representation of B.
- Źródło:
-
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics; 2010, 15; 9-24
2450-9302 - Pojawia się w:
- Scientific Issues of Jan Długosz University in Częstochowa. Mathematics
- Dostawca treści:
- Biblioteka Nauki