Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bačakova, L." wg kryterium: Autor


Tytuł:
Nanoparticles, nanofibres and their combinations in bone tissue engineering – a review
Autorzy:
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/284712.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
bone tissue engineering
nanoparticles
nanofibres
Opis:
Nanostructured materials are considered as promising scaffolds for advanced tissue engineering. The reason is that the nanostructure of a material resembles the nanoarchitecture of the natural extracellular matrix (ECM), e.g., its organization into nanofibres, nanocrystals, nanosized folds of ECM molecules, etc. On nanostructured surfaces , the cell adhesion - mediating ECM molecules adsorb in an appropriate geometrical orientation which gives cell adhesion receptors access to specific sites in ECM molecules, such as amino acid sequences like Arg-Gly-Asp (RGD) , which serve as ligands for these receptors [1 - 3]. In addition, these materials enhance the adsorption of vitronectin, which is recognized preferentially by osteoblasts over other cell types [1 - 3]. Nanostructured materials have therefore been considered as suitable particularly for bone tissue engineering. Our studies have focused on carbon and hydroxy apatite nanoparticles as components of substrates for colonization with human bone - derived cells in vitro. Carbon nanoparticles, namely nanocrystalline diamond (NCD) and fullerenes C 60, have been used in the form of films deposited on carbon, glass, silicon and metallic substrates [3-4]. These films were o f continuous (NCD) or micropatterned (C 60 ) morphology , and have been intended for surface modifications of bone and dental implants [5], or for creating surfaces enabling regionally -selective cell adhesion and directed cell growth [6]. NCD films were also doped with boron, which resulted in improved adhesion, growth and osteogenic differentiation (measured by the production of collagen I, osteocalcin and alkaline phosphatase content) of human osteoblast-like M G 63 cells [7]. These beneficial effects can be explained by the increased electrical conductivity of boron-doped nanocrystalline diamond films, and can be further enhanced by active electric stimulation of cells. Some nanoparticles were also incorporated into polymeric matrices, e.g. foils of a terpolymer of polytetra fluoroethylene, poly vinyldi fluoride and poly- propylene ( carbon nanohorns, carbon nanotubes ) or nano fibres prepared by an electrospinning technique from polylactide, PLA (hydroxyapatite nanoparticles ) or poly( lactide-co-glycolide), PLGA (nanodiamond). All these composite substrates promoted the adhesion, growth and osteogenic differentiation of human osteoblast-like MG 63 cells in an extent similar to or even better than standard cell cultivation substrates , such as polystyrene dishes or microscopic glass coverslips. The adhesion and growth of MG 63 cells was particularly improved on the terpolymer of polytetrafluoroethylene, polyvinyldifluoride and polypropylene enriched with 4 wt. % of single-wall carbon nanohorns or multi-wall carbon nanotubes [3, 4]. The osteogenic differentiation of MG 63 cells (measured by concentration of osteocalcin) was enhanced on nanofibrous polylactide scaffolds loaded with 15 wt % of hydroxyapatite. On PLGA nanofibrous scaffolds loaded with approx. 23 wt. % of diamond particles, the number of initially adhering MG 63 cells on day 1 after seeding and the following growth dynamics of the cell swere similar to the values on pure PLGA scaffolds [8]. However, the cells on PLGA meshes reinforced with nanodiamond formed larger and more numerous talin-containing focal adhesion plaques. In addition, these plaques in cells on PLGA-nanodiamond scaffolds were localized not only at the cell periphery but also in the central part of the cells (FIG (1). Thus, it can be concluded that nanoparticle-modified materials are more promising than their non-modified counterparts f or colonization with bone cells, f or construction o f bone implants and f or bone t issue engineering.
Źródło:
Engineering of Biomaterials; 2011, 14, no. 109-111 spec. iss.; 4-5
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adhesion and growth of human osteoblast-like MG 63 cells on titanium and stainless steel samples developed for constructing bone implants
Autorzy:
Stranavova, L.
Bacakova, M.
Bacakova, L.
Fencl, J.
Powiązania:
https://bibliotekanauki.pl/articles/284428.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
osteoblasts
biomaterials
implants
Opis:
Titanium and stainless steel are strong, corrosion - resistant and biocompatible metals. Thanks to their remarkable properties, they have been in use for a long time in clinical medicine, mainly for constructing and replacing large joints, in particular the bone-anchoring parts, e.g. cups and stems, and also for fabricating orthopaedic screws and splints. In the Czech Republic, these devices are produced by Beznoska Ltd., and are clinically applied in the Orthopaedic Clinic, Bulovka Faculty Hospital in Prague. This study has investigated the biocompatibility of samples made of pure titanium (according to quality standard ISO 5832-2 ) and corrosion-resistant steel (quality standards ISO 5832-1 and AISI 316L), obtained from Beznoska. In addition to Fe, the steel samples contained C (max. 0.025 wt. %), Si (0.6 wt. %), Mn (1.7 wt. %), P( max. 0.025 wt. %), S(max. 0.003 wt. %), Cr (17.5 wt. %), Ni (13.5 wt. %), Mo (2.8 wt. %), and Cu (max. 0.1 wt. %). The materials were used in the form of square samples (9x9 mm or 30x30 mm, thickness 1 mm ). Both Ti and steel samples were grinded with SiO2. The surface of the steel samples was then treated by polishing with Al2O3 paste (grain size up to 1 μm), while the surface of the Ti samples, i.e. a material not suitable for polishing, was finished by brushing using another type of Al2O3 paste with slightly larger grains. Thus, the surface of the steel samples was finally smoother and glossy, while the Ti surface was rougher and matted. For the in vitro biocompatibility tests, human osteoblast-like MG 63 cells (European Collection of Cell Cultures, Salisbury, UK) were used. The smaller samples (9 x 9 mm) were inserted into polystyrene 2 4-well cell culture plates (TPP, Trasadingen, Switzerland; well diameter 1.5 cm). Each well contained 25000 cells (approx. 14150 cells / cm 2 ) and 1.5 ml of Dulbecco’s Modified Eagle Minimum Essential Medium (DMEM; Sigma, USA, Cat. No. 10270-106) supplemented with 10 % foetal bovine serum (FBS; Gibco, Cat. No. 10270-106) and gentamicin (40 μg/ml, LEK, Slovenia). These samples were used for evaluating the size of the cell spreading area (day 1), and for evaluating cell shape and cell viability (days 1, 4 and 7 after seeding). The size o f the cell spreading area was measured using Atlas Software (Tescan Ltd., Brno, Czech Republic). The viability of the cells was determined by the LIVE/DEAD viability cytotoxicity kit for mammalian cells (Invitrogen, Molecular Probes, USA). The larger samples (30x30 mm) were inserted into GAMA polystyrene dishes (diameter 5 cm; GAMA Group Joint- Stock Company, Ceske Budejovice, Czech Republic) and seeded with 300000 cells/dish (approx. 15300 cells/cm 2) suspended in 9 ml of the above mentioned culture medium. These samples were used for evaluating the cell number on days 1, 4 and 7 after seeding, using a Beckman Vi- CELL XR Cell Analyser automatic cell counter. The results indicated that the number of initially adhering cells on day 1 after seeding was significantly lower on the titanium (5320±390 cells/cm2) and on the stainless steel ( 4110±370 cells/cm 2) than on the control polystyrene culture dishes (7740±350 cells/cm2). However, on day 4 after seeding, the cell population density on both metallic materials studied here became significantly higher than on the control polystyrene dishes (75200±2 890 cells/cm2 on Ti and 90870 ±2350 cells/cm2 on steel vs. 56440±1180 cells/cm2 on polystrene). This suggests faster cell proliferation on both metallic materials than on polystyrene. At the same time, the cell number on the stainless steel samples was significantly higher than on the Ti samples. On day 7, the differences in number of adhered cells on both studied metals and on the control polystyrene substrate was on an average similar (from 328780±680 cells/cm2 to 362200 ±760 cells/cm2). The cell viability on all tested materials was almost 100 % in all culture intervals. The morphology of the cells on the studied materials was similar to the morphology of the adhered cells on the control polystyrene dishes, i.e. the cells were mostly flat and polygonal, and the size of their cell spreading areas w as similar on all tested materials. The cells were distributed homogeneously on the entire material surface, and on day 4 they started to form confluent cell layers (FIG. (1). It can be concluded that the tests of biocompatibility confirmed that the titanium and the stainless steel promoted the adhesion and growth of bone - derived cells, and thus these materials are promising for construction of bone implants and for their good integration with the surrounding bone tissue. Further studies on osteogenic cell differentiation, potential immune activation and the response of the bone cells to growth factors, including bone morphogenetic protein, are in progress.
Źródło:
Engineering of Biomaterials; 2011, 14, no. 109-111 spec. iss.; 10-11
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Surface modifications of clinically used metallic implants for enhancing their biocompatibility and bioactivity – a review
Autorzy:
Bacakova, L.
Liskova, J.
Stankova, L.
Kromka, A.
Powiązania:
https://bibliotekanauki.pl/articles/284504.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
metallic implants
biocompatibility
bioactivity
Źródło:
Engineering of Biomaterials; 2014, 17, 125; 2-5
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adhesion and growth of vascular cells on porous polyethylene terephthalate scaffolds
Autorzy:
Havlikova, J.
Turek, K.
Dajko, G.
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/283781.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
polymers
scaffolds
vascular cells
Opis:
Polymers such as polyethylene terephthalate (PET) have been used for large-caliber vascular prostheses with a relative success but their application is limited in small-caliber grafts. Blood vessel grafts with an internal diameter smaller than 6 mm are prone to fail mainly due to their thrombogenicity and poor haemodynamics. One of the possible solutions of these problems may be reconstruction of the tunica intima and media on the synthetic grafts. For this purpose, special PET foils were prepared. Six-μm thick foils were irradiated by copper ions or fission fragments from a radionuclide etalon source 252Cf and etched by 1M sodium hydroxide to obtain holes of a defined diameter (from 80 to100 nm in foils irradiated by copper ions and from 1.0 to 1.5 μm in foils irradiated by fission fragments) and density (1x106 cm-2 - fission fragments to 5x108 cm-2 – copper ions) (FIG.1). Afterward these materials were seeded with vascular smooth muscle cells (VSMC) derived from the rat aorta, or endothelial cells of the line CPAE. Adhesion, proliferation and viability of the cells were monitored after one, three and seven days. The cell proliferation was evaluated by changes in the cell number in several time intervals and construction of growth curves. Determination of cell viability was based on staining of live cells with calcein emitting green fluorescence, and the dead cells with ethidium bromide emitting red fluorescence. Experiments with the growth of vascular smooth muscle cells and endothelial cells on the PET scaffolds with different pore size showed that endothelial cells prefer pores around 1 μm while VSMC have no preferences concerning the pore size of the polymer scaffolds tested. Although the highest cell population densities were found on the glass coverslips used as control material, the number of cells growing on pristine PET did not differ from the densities on PET foils irradiated by Cu-ions or fission fragments of Cf. The obtained data showed applicability of our improved polymer foils as supporting scaffolds for vascular cells. In the further step, these porous PET membranes could serve as synthetic analogues of internal elastic lamina separating vascular smooth muscle cells and endothelial cells in a newly constructed bioartificial vascular wall.
Źródło:
Engineering of Biomaterials; 2010, 13, no. 99-101; 108-109
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adhesion, growth and osteogenic differentiation of human bone marrow mesenchymal stem cells on positively and negatively charged ferroelectric crystal surfaces
Autorzy:
Bacakova, L.
Vandrovcova, M.
Vanek, P.
Petzelt, J.
Powiązania:
https://bibliotekanauki.pl/articles/284786.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
biomaterials
mesenchymal stem cells
crystal surfaces
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 28
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fullerene-titanium (C60/Ti) composites cause no DNA damage response in human osteoblast-like MG 63 cells
Autorzy:
Kopova, I.
Bacakova, L.
Vacik, J.
Lavrentiev, V.
Powiązania:
https://bibliotekanauki.pl/articles/284970.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
fullerenes
composites
human osteoblasts
Opis:
Fullerenes (C60) and fullerene-based composites are considered as promising substrates for biological cell colonization. It might be mainly due to their nanostructure, resembling the nanoarchitecture of the natural extracellular matrix. Thin films of binary C60/Ti composites with various concentrations of Ti ranging from 25% (i.e., 25 Ti atoms and 75 C60 molecules) to 70% were deposited on microscopic glass coverslips in micro-patterned form through a metallic mask, and were tested for their potential use in bone tissue engineering. It is known that fullerenes and their derivatives can cause cytotoxic injury, cell death or inhibition of cell growth. These effects are based mainly on the reactivity of fullerenes, which may weaken with time due to the oxidization and polymerization of fullerenes in an air atmosphere. We therefore tested the dependence between the age of C60/Ti composites (i.e., from one week to one year) and the level of DNA damage of human osteoblast-like MG 63 cells in cultures on these materials. The DNA damage was analyzed by immunofluorescence staining of markers of DNA damage response, such as phosphorylation of histone H2AX and focal recruitment of p53-binding protein. As positive control to markers of DNA damage response was used 7 days long treatment with 2,5 mM Thymidine. We also monitored the proliferation and morphological changes of the cells. After 7 days of cultivation, we observe no cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation, which are signs of cell senescence, and no increased induction of cell death. In addition, there was no increased level of DNA damage response on the C60/Ti composites (FIG.1). We also found no significant differences in cell population densities and no increased level of DNA damage among various Ti concentrations (FIG.1). Moreover, there was no effect of the age of the C60/Ti composites on the cell population densities or on the DNA damage response (FIG.1). These results suggest that fullerenes in combination with Ti do not cause cytotoxic injury and this material could be used in bone tissue engineering.
Źródło:
Engineering of Biomaterials; 2010, 13, no. 99-101; 109-110
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adhesion, growth and osteogenic differentiation of human bone marrow mesenchymal stem cells on positively and negatively charged and uncharged ferroelectric crystal surfaces
Autorzy:
Vandrovcova, M.
Bacakova, L.
Vanek, P.
Petzelt, J.
Powiązania:
https://bibliotekanauki.pl/articles/285786.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
electroactive ceramics
surface charge
cell number
resazurin
type I collagen
alkaline phosphatase
osteocalcin
bone matrix mineralization
Opis:
The cell-material interaction is significantly influenced by the physicochemical properties of the material surface, including its electrical charge. In this study, the effect of the surface polarity of ferroelectric LiNbO3 single crystals on the adhesion, growth and osteogenic differentiation of human bone marrow mesenchymal stem cells was investigated. The cells were cultured on the normal-to-plane poled and in-plane poled plates resulting in positive, negative and zero surface charge. The number of initially adhering cells on day 1 after seeding, their spreading, shape, and their metabolic activity, production of type I collagen, activity of alkaline phosphatase and mineralization in the following days of cultivation (days 6 and 20) were comparable on all three tested surfaces. However, significant differences were found in the expression of mRNA for type I collagen, alkaline phosphatase and osteocalcin, i.e. an early, medium-term and late arkers of osteogenic cell differentiation, respectively. On day 20, the expression of type I collagen was significantly lower in cells on negatively-charged than on non-charged surfaces. Moreover, the expression of alkaline phosphatase and osteocalcin was higher in cells on positively-charged than on negatively-charged surfaces. These differences were generally more pronounced in standard cell culture medium than in osteogenic medium, which could, at least partly, mask the influence of the material surface properties on the cell behaviour. Thus, positively-charged LiNbO3 surfaces seemed to be more suitable for the osteogenic differentiation of bone marrow mesenchymal stem cells than the negatively-charged surfaces.
Źródło:
Engineering of Biomaterials; 2016, 19, 135; 2-7
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Potential activation of the immune system on metallic materials for bone implants
Autorzy:
Stranavova, L.
Bacakova, M.
Novotna, K.
Bacakova, L.
Fencl, J.
Powiązania:
https://bibliotekanauki.pl/articles/285314.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
bone implants
metallic materials
biomaterials
Opis:
Titanium and stainless steel are metallic materials that have been in use for a long time in orthopedics, traumatology and stomatology. These metals are strong, corrosion-resistant and biocompatible. However, metallic materials have some disadvantages in comparison with the natural bone, particularly their relatively high specific weight and toughness. For example, the Young's modulus of AISI316L stainless steel, Co-Cr alloys and Ti-6Al-4V alloy, i.e. materials frequently used for implantation into bone, ranges between 110-220 GPa, while the Young's modulus of bone tissue is 10-40 GPa [1]. In addition, these metals can release cytotoxic, allergenic and immunogenic ions, which can affect their biocompatibility [2, 3]. Implantation is a special type of transplantation process, in which the implant is inserted into the body, usually in order to replace an irreversibly damaged tissue. However, the immune system recognizes the implant as a foreign substance and attacks it with its effector mechanisms. Just as it can reject other types of transplants, the immune system can reject an artificial implant. To prevent rejection of an implant, it is important to study the potential activation of the immune system. This study has investigated the biocompatibility of samples made of pure titanium (according to quality standard ISO 5832-2) and corrosion-resistant steel (quality standards ISO 5832-1 and AISI 316L), obtained from Beznoska Ltd. (Kladno, Czech Republic), and the potential activation of the immune system by these materials. In addition to Fe, the steel samples contained C (max. 0.025 wt.%), Si (0.6 wt.%), Mn (1.7 wt.%), P (max. 0.025wt.%), S (max. 0.003 wt.%), Cr (17.5 wt.%), Ni (13.5 wt.%), Mo (2.8 wt.%), and Cu (max. 0.1 wt. %). The materials were used in the form of square samples (9x9 mm or 30x30 mm, thick¬ness 1 mm). Both the Ti samples and the steel samples were ground with SiO2. The surface of the steel samples was then treated by polishing with Al2O3 paste (grain size up to 1 um), while the surface of the Ti samples, i.e. a material not suitable for polishing, was finished by brushing using another type of Al2O3 paste with slightly larger grains. Thus, the surface of the steel samples was finally smoother and glossy, while the Ti surface was rougher and matte. For the in vitro biocompatibility tests, human osteoblast-like MG 63 cells (European Collection of Cell Cultures, Salisbury, UK) were used. The smaller samples (9x9 mm) were inserted into polystyrene 24-well cell culture plates (TPP, Trasadingen, Switzerland; well diameter 1.5 cm). Each well contained 25 000 cells (approx. 14 150 cells/cm2) and 1.5 ml of Dulbecco's Modified Eagle Minimum Essential Medium (DMEM; Sigma, USA, Cat. No. 10270-106) supplemented with 10% foetal bovine serum (FBS; Gibco, Cat. No. 10270-106) and gentamicin (40 /jg/ml, LEK, Slovenia). These samples were used for evaluating the size of the cell spreading area (day 1), and for evaluating cell shape and cell viability (days 1, 4 and 7 after seeding). The size of the cell spreading area was measured using Atlas Software (Tescan Ltd., Brno, Czech Republic). The viability of the cells was determined by the LIVE/ DEAD viability/cytotoxicity kit for mammalian cells (Invitrogen, Molecular Probes, USA). The larger samples (30x30 mm) were inserted into GAMA polystyrene dishes (diameter 5 cm; GAMA Group Joint-Stock Company, Ceske Budejovice, Czech Republic) and seeded with 300 000 cells/dish (approx. 15 300 cells/cm2) suspended in 9 ml of the above mentioned culture medium. These samples were used for evaluating the cell number on days 1, 4 and 7 after seeding, using a Beckman Vi-CELL XR Cell Analyser automatic cell counter. For the in vitro analysis of markers of osteogenic differentiation and cell immune activation, human osteoblast-like MG 63 cells (European Collection of Cell Cultures, Salisbury, UK) were used. The samples (9x9 mm) were inserted into polystyrene 24-well cell culture plates (TPP, Trasadingen, Switzerland; well diameter 1.5 cm). Each well contained 25 000 cells (approx. 14 150 cells/cm2) and 1.5 ml of Dulbecco's Modified Eagle Minimum Essential Medium (DMEM; Sigma, USA, Cat. No. 10270-106) supplemented with 10% foetal bovine serum (FBS; Gibco, Cat. No. 10270-106) and gentamicin (40 jg/ml, LEK, Slovenia). The cells were cultured for 1, 4, or 7 days at 37°C in a humidified atmosphere of 5% of CO2 in the air. On day 4 after seeding, the medium was changed; one half of the samples contained standard medium DMEM with 10% foetal bovine serum and gentamicin (40 jg/ml) mentioned above, and the second half contained osteogenic medium, i.e. the standard medium further supplemented with ß-glycerophosphate, L-glutamin, ascorbic acid, dihydroxyvitamin D3, dexamethason, 10% foetal bovine serum and gentamicin (40 jg/ml). Using an Enzyme-Linked ImmunoSorbent Assay (ELISA), we measured the concentration of the Inter¬cellular Adhesion Molecule-1 (ICAM-1, a marker of cell immune activation) and osteocalcin (a marker of osteogenic cell differentiation). These measurements were performed in homogenates of cells on days 4 and 7 after seeding, and the concentration of both markers was measured per cell or per mg of protein. On day 7, the amount of osteocalcin was measured and compared in cells cultured in the standard and osteogenic media. We also measured TNF-а and IL- 1ß, i.e. other markers of cell immune activation. These cytokines are important mediators of the inflammatory response, and they are involved in a variety of cellular activities, including cell proliferation and differentiation. We measured the secretion of these markers into the cell culture medium in murine macrophage-like RAW264.7 cells (American Type Culture Collection, Manassas, VA). The samples (9x9 mm) were inserted into polystyrene 24-well cell culture plates (TPP, Tra- sadingen, Switzerland; well diameter 1.5 cm). Each well contained 30,000 (approx. 16 980 cells/cm2) cells and 1.5 ml of the culture medium. RAW 264.7 cells were cultured in the RPMI-1640 medium (Sigma; 10% fetal bovine serum, 40 jg/mL gentamicin). After 7 days of cultivation, the cell culture medium was collected and used for measuring the concentration of TNF-а and IL-1ß by a sandwich ELISA using commercially available kits. A mouse TNF-а kit and an IL- 1ß Quantikine ELISA kit were used for the RAW 264.7 cells. Both kits were purchased from R and D Systems (Minneapolis, MN) and used according to the manufacturer's protocol. The results indicated that the number of initially adhering MG 63 cells on day 1 after seeding was significantly lower on the titanium (5320±390 cells/cm2) and on the stainless steel (4110±370 cells/cm2) than on the control polystyrene culture dishes (7740±350 cells/cm2). However, on day 4 after seeding, the cell population density on both metallic materials became significantly higher than on the control polystyrene dishes (75200±2890 cells/cm2 on Ti and 90 870±2350 cells/cm2 on steel vs. 56440±1180 cells/cm2 on polystyrene). This suggests faster cell proliferation on both metallic materials than on polystyrene. At the same time, the cell number on the stainless steel samples was significantly higher than on the Ti samples. On day 7, the differences in the number of adhered cells on the two metals and on the control polystyrene substrate was on an average similar (from 328780±680 cells/cm2 to 362200±760 cells/cm2). The cell viability on all tested materials was almost 100% in all culture intervals. The morphology of the cells adhered on the studied materials was similar to the morphology of the cells on the control polystyrene dishes, i.e. the cells were mostly flat and polygonal, and the size of their cell spreading areas was similar on all tested materials. The cells were distributed homogeneously on the entire material surface, and on day 4 they started to form confluent cell layers. On day 4, we measured the amount of ICAM-1 by the ELISA test. This immunoglobulin molecule is typically expressed on cells of the immune system, but it is also expressed on other cell types, including MG 63, during their immune activation, e.g. by an artificial growth support. In this case, ICAM-1 molecules on cells are bound byß2-integrin receptors on inflammatory cells (for a review, see [4]). Surprisingly, titanium seemed to be more immunogenic than stainless steel, which was indicated by a higher concentration of ICAM-1 per cell and mg of protein in cells on day 4 after seeding. However, on day 7, there was no difference between the concentrations of ICAM-1 per cell and mg of protein in cells on titanium and on stainless steel. The second molecule that we measured was osteocalcin, a calcium-binding extracellular matrix glycoprotein, an important marker of the bone formation process. The concentration of osteocalcin on day 4 in the standard culture medium was higher in MG 63 cells on the titanium and stainless steel than on the control polystyrene samples. This could be explained by the fact that the metals are harder than polystyrene. It is known that harder substrates promote osteogenic cell differentiation, while softer substrates direct the cell differentiation towards neural or muscle phenotype [5]. In addition, the osteogenic differentiation was further supported by the osteogenic medium, as indicated by a higher concentration of osteocalcin in cells grown in this medium compared to cells in the standard medium on day 7 after seeding. On day 7 after seeding murine macrophage-like RAW264.7 cells on the tested materials, the concentration of TNF-а in the culture medium ranged on an average from 57.10 to 79.39 pg per 2000000 cells. The concentration of TNF-а in the medium from Ti and Fe was significantly higher than in the medium from the control polystyrene dishes. The highest value (79.39 pg/2000000 cells) was found in the medium taken from RAW264.7 cells on Ti. The second molecule that we tested was IL-1ß. No significant differences in the concentration of IL-1ß were detected in the culture medium obtained from RAW264.7 cells on all tested materials. In other words, neither type of metallic material, i.e. Ti and Fe, evoked significantly higher production of IL-1ß by RAW 264.7 cells than standard polystyrene cell culture dishes. It can be concluded that the tests of biocompatibility and immune activation confirmed that titanium and stainless are promising for construction of bone implants and for good integration with the surrounding bone tissue.
Źródło:
Engineering of Biomaterials; 2012, 15, no. 116-117 spec. iss.; 130-131
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polylactide nanofibers in skin tissue engineering
Autorzy:
Bacakova, M.
Varga, M.
Riedel, T.
Stranska, D.
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/283841.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
nanofibers
tissue engineering
biomaterials
Opis:
Various artificial or natural biomaterials can be used for constructing a scaffold suitable for treating skin injuries. Artificial skin replacements are made from polyhema, polybutylene terephthalate, nylon, polylactic acid and polyglycolic acid or their copolymers. The most widely applied natural biomaterials are collagen, chitin, hyaluronic acid and chondroitin sulfate [1]. In recent tissue engineering, nanofibrous scaffolds have been very attractive because they better simulate the architecture of natural extracellular matrix. In skin tissue engineering, nanofibrous membranes can be used for constructing a bilayer of fibroblasts and keratinocytes [2]. These membranes will separate the two cell types, ensuring their physical and humoral communication; thus the layer of fibroblasts will serve as a feeder for keratinocytes. For our study, we chose nanofibers made of polylactide (PLA), prepared in external collaboration with Elmarco Ltd. (Liberec, Czech Republic). The main advantage of PLA is its biodegradability; it is slowly resorbed in the organism, and is finally replaced by regenerate tissue. The adhesion and growth of cells on the scaffolds can be improved by further modifications, e.g. plasma treatment or coating the scaffold fibers with biomolecules that are normally present in the natural skin (collagen, hyaluronic acid), or that occur during wound healing (fibrin). Modification by plasma leads to changes in the physical and chemical properties of the material surface (i.e., surface wettability, morphology, electric conductivity, roughness, morphology, mechanical properties) [3]. In our experiment we evaluated the interaction of human HaCaT keratinocytes with PLA nanofibrous meshes that were modified by plasma irradiation or by coating with collagen, fibrin and hyaluronan of low (70-120 KDa) or high (1000-1250 KDa) molecular weight. For plasma irradiation, PLA nanofibers were exposed to O2, CH4 or Ar plasma for different times, with various ranges of power. For more detailed studies, O2 plasma was chosen, because this type of plasma best supported the adhesion and growth of cells. PLA nanofibrous meshes were prepared with different densities of the fibres (5 g/m2, 9 g/m2, 16 g/m2, 30 g/m2). The potential damage to the fibres after plasma modification was observed using scanning electron microscopy (SEM). The cell adhesion, growth and metabolic activity were evaluated by the number of cells, their morphology, the amount of cellular DNA (PicoGreen ds DNA assay kit, Invitrogen®) and the XTT test (Roche) on days 1, 3 and 7 after seeding. The results indicated that polylactide nanofibrous scaffolds promote adhesion and growth of HaCaT keratinocytes. Modification in plasma further improved the proliferation of cells on PLA nanofibers. The cells proliferated better on PLA meshes with lower densities of the fibers (5 g/m2, 9g/m2). SEM showed that damage to the fibers increased with the length of the period of plasma treatment. The collagen deposited on the fibers changed the morphology of the cells. The cells on the control unmodified fibers adhered in clusters, but on the collagen-coated fibers they were spread homogeneously. We can conclude that polylactide nanofibrous membranes are a promising material for the construction of temporary carriers for skin cells, particularly after they have been physically or biologically modified.
Źródło:
Engineering of Biomaterials; 2012, 15, no. 116-117 spec. iss.; 127-128
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of temperature and pore size on cell growth and proliferation on hydroxyapatite scaffolds
Autorzy:
Soukup, D.
Bacakova, M.
Pabst, W.
Gregorova, E.
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/284010.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
biomaterials
porous biomaterials
scaffolds
Opis:
Porous biomaterials, especially synthetic porous ceramics, are of significant importance in bone tissue engineering, and there has been rapid growth in the medical use of these biomaterials over the last 50 years. The reason is that they are relatively easy to prepare and are available in unlimited supply, unlike the allografts and autografts that are used in clinical practice. Various hydroxyapatite (HAp) scaffolds can be prepared, using various pore-forming techniques and firing temperatures. The firing temperature significantly affects microstructural parameters such as total porosity, pore size, the interconnected pore network, and also the chemical and phase composition. Last but not least, it also affects the mechanical properties of the samples. Knowledge about these factors is therefore essential for designing a sample with the desired controlled microstructure and properties. In this work, uniaxial pressing has been used for preparing HAp disks from nanocrystalline HAp powder, using saccharose as a pore-forming agent. The highest porosity achieved (after partial sintering at 800°C) was in the range of 64.7-70.6%. The firing temperature significantly affects porosity, pore size, grain size and mechanical strength, whereas the dwell time has only a minor effect on these parameters. After firing, XRD confirmed more than 98.4% HAp in all cases. Mercury porosimetry confirmed the presence of nanosized interstitial voids for partially sintered materials and pore throat sizes of approximately 100μm (much smaller than the pore cavities), which is adequate for bone cell penetration and further ingrowth. After firing at 1200°C, the matrix is more or less fully sintered, and nanosized pores are absent or closed. The biological part of the paper summarizes the results from cell-seeding and cultivation experiments to determine the cell adhesion, proliferation, viability, mitochondrial activity and osteogenic cell differentiation on the scaffolds, and thus the biocompatibility and bioactivity of the scaffolds. The highest values for all these parameters, particularly the number of cells, were on HAp fired at 1200°C. The samples fired at 1200°C were prepared with various pore sizes (in the range of 100 - 800μm). We found that pore size has a non-significant effect on cell colonization, whereas the firing temperature has a major influence. All tested HAp samples showed a remarkable ability to adsorb proteins on their surfaces, namely albumin and fibronectin, and to promote cell adhesion. Some cytotoxic activity was observed on the samples fired at 800 and 1000°C. Possible reasons for this cytotoxicity have been discussed. However, it can be concluded that the HAp samples created in this study and fired at 1200°C hold great promise for bone tissue engineering.
Źródło:
Engineering of Biomaterials; 2012, 15, no. 116-117 spec. iss.; 127
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanofibrous membrane with fibrin and collagen structures as carriers for skin cells
Autorzy:
Bacakova, M.
Riedel, T.
Stranska, D.
Brynda, E.
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/283803.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
cells
nanofibrous
collagen structure
Źródło:
Engineering of Biomaterials; 2014, 17, no. 128-129; 2-4
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The growth of Saos-2 cells on DLC layers doped with titanium
Autorzy:
Travnickova, M.
Filova, E.
Jelinek, M.
Kocourek, T.
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/284846.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
diamond-like carbon (DLC)
titanium alloys
implants
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 67
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved adhesion and growth of osteoblast-like MG-63 cells in cultures on titanium modified by gold particles
Autorzy:
Parizek, M.
Base, T.
Hruby, M.
Lisa, V.
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/285778.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
metallic materials
titanium
surgical implants
gold microparticles
cell adhesion
cell growth
Opis:
Metallic materials are important for load-bearing bone implants. The osteointegration of these implants can be improved by appropriate surface modifications. Therefore, we present here a study of the cell growth on titanium surfaces modified with films created from gold microparticles. These particles in the form of microplates or polyhedral microcrystals were deposited on titanium plates from ethanol solutions, dried and annealed with a hydrogen flame. Some samples were additionally modified by polyethylene imine. The materials engendered from these modifications were used to investigate the adhesion and growth of human osteoblast-like MG-63 cells on these surfaces in the DMEM medium with 10% of fetal bovine serum. One day after seeding, the highest number of initially adhered cells was found on the surfaces modified by both types of gold microparticles. This trend was the same three and seven days after seeding. The numbers of cells on pure Ti and Ti modified only with gold particles were significantly higher than on samples which were modified with polyethylene imine. The cell spreading areas projected on the materials were significantly larger in cells on the samples with polyethylene imine modification. However, the shape of these cells was mostly rounded or star-like with thin and long protrusions, while on the materials without polyethylene imine, it was mostly polygonal. The cell proliferation activity was estimated from XTT test, based on the activity of mitochondrial enzymes. This test showed that the proliferation activities of osteoblast-like MG-63 cells of the 3rd and 7th days of the experiment were more pronounced on the samples modified only by gold microparticles. Immunofluorescence showed that the focal adhesion plaques containing vinculin and the fibers containing β-actin were most apparent, more numerous and more brightly stained in cells on Ti modified by gold microplates and gold polyhedral microcrystals, especially in comparison with the corresponding samples modified with polyethylene imine (Fig. 1). Thus, it can be concluded that the modification of titanium samples by both types of gold microparticles enhanced the adhesion and growth of MG 63 cells.
Źródło:
Engineering of Biomaterials; 2013, 16, no. 122-123 spec. iss.; 77
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Black Orlon as promising material for bone tissue engineering
Autorzy:
Parizek, M.
Vetrik, M.
Hruby, M.
Lisa, V.
Bacakova, L.
Powiązania:
https://bibliotekanauki.pl/articles/284127.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
Orlon
polyacrylonitrile
tissue engineering
porous 3D scaffolds
cell adhesion
cell growth
osteoblasts
Źródło:
Engineering of Biomaterials; 2014, 17, no. 128-129; 4-6
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hyaluronic Acid-Coated Carbon Nonwoven Fabrics as Potential Material for Repair of Osteochondral Defects for medical applications
Włókniny węglowe modyfikowane kwasem hialuronowym jako potencjalne podłoża w leczeniu ubytków kostno-chrzęstnych
Autorzy:
Rajzer, I.
Menaszek, E.
Bacakova, L.
Orzelski, M.
Błażewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/231613.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
cartilage
carbon fibres
nonwoven scaffolds
hyaluronic acid
biomaterials
chrząstki
włókna węglowe
modyfikacja włóknin
kwas hialuronowy
biomateriały
Opis:
Damaged articular cartilage is known to have poor capacity for regeneration. Carbon fibres (CFs) have been widely investigated as cellular growth supports in cartilage tissue engineering. However, the long duration of the process of cartilage restoration limits the applicability of CFs implants in the treatment of cartilage tissue defects. Hyaluronic acid (HA) plays a key role in cartilage tissue development, repair and function. In the present study we focused on the in vitro and in vivo evaluation of two types of carbon nonwoven fabrics: HA modified and non-modified carbon nonwovens. The results of in vitro studies showed that cells attached well and retained their good viability in the carbon nonwoven matrix. The incorporation of hyaluronic acid resulted in the enhancement of cell proliferation. The results of in vivo studies showed a faster process of tissue regeneration in the case of HA modified carbon nonwovens. The results presented indicated that HA-modified carbon materials seem to be a suitable material for the treatment of osteochondral defects.
Uszkodzona chrząstka stawowa posiada słabą zdolność do regeneracji. Od lat prowadzone są badania nad zastosowaniem włókien węglowych w inżynierii tkankowej chrząstki, jako podłoży podtrzymujących wzrost komórek. Niestety długi proces odbudowy chrząstki w obrębie implantu węglowego ogranicza możliwość zastosowania włóknin węglowych w leczeniu ubytków chrzęstnych. Kwas hialuronowy (HA) jest składnikiem chrząstki odpowiedzialnym za jej właściwy rozwój oraz proces regeneracji. Modyfikacja włóknin kwasem hialuronowym może w korzystny sposób wpłynąć na własności biologiczne implantów węglowych. W pracy przedstawiono wyniki badań in vitro oraz in vivo nad włókninami węglowymi modyfikowanymi kwasem hialuronowym oraz nad włókninami niemodyfikowanymi. Z przeprowadzonych badań in vitro wynika, że modyfikacja włóknin węglowych kwasem hialuronowym powoduje wzrost proliferacji komórek hodowanych na tych materiałach. Natomiast wyniki badań in vivo wykazały, że proces regeneracji tkanki następuje szybciej w przypadku włóknin węglowych modyfikowanych kwasem hialuronowym niż w przypadku włóknin niemodyfikowanych. Przeprowadzone badania wskazują, że włóknina węglowa modyfikowana kwasem hialuronowym może być rozważana jako potencjalny materiał w leczeniu ubytków kostno-chrzęstnych.
Źródło:
Fibres & Textiles in Eastern Europe; 2013, 3 (99); 102-107
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies