Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Azvin, Farzaneh" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Bounds on the Double Italian Domination Number of a Graph
Autorzy:
Azvin, Farzaneh
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/32222552.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Italian domination
double Italian domination
probabilistic methods
Opis:
For a graph G, a Roman {3}-dominating function is a function f : V → {0, 1, 2, 3} having the property that for every vertex u ∈ V, if f(u) ∈ {0, 1}, then f(N[u]) ≥ 3. The weight of a Roman {3}-dominating function is the sum w(f) = f(V) = Σv∈V f(v), and the minimum weight of a Roman {3}-dominating function is the Roman {3}-domination number, denoted by γ{R3}(G). In this paper, we present a sharp lower bound for the double Italian domination number of a graph, and improve previous bounds given in [D.A. Mojdeh and L. Volkmann, Roman {3}-domination (double Italian domination), Discrete Appl. Math. 283 (2022) 555–564]. We also present a probabilistic upper bound for a generalized version of double Italian domination number of a graph, and show that the given bound is asymptotically best possible.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1129-1137
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies