Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ashraf, Asifa" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Approximate solution of painlevé equation i by natural decomposition method and laplace decomposition method
Autorzy:
Amir, Muhammad
Haider, Jamil Abbase
Ahmad, Shahbaz
Ashraf, Asifa
Gul, Sana
Powiązania:
https://bibliotekanauki.pl/articles/2233067.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
natural decomposition method
Laplace decomposition method
series solution
Adomain polynomial
Painlevéequation
Opis:
The Painlevé equations and their solutions occur in some areas of theoretical physics, pure and applied mathematics. This paper applies natural decomposition method (NDM) and Laplace decomposition method (LDM) to solve the second-order Painlevé equation. These methods are based on the Adomain polynomial to find the non-linear term in the differential equation. The approximate solution of Painlevé equations is determined in the series form, and recursive relation is used to calculate the remaining components. The results are compared with the existing numerical solutions in the literature to demonstrate the efficiency and validity of the proposed methods. Using these methods, we can properly handle a class of non-linear partial differential equations (NLPDEs) simply. Novelty: One of the key novelties of the Painlevé equations is their remarkable property of having only movable singularities, which means that their solutions do not have any singularities that are fixed in position. This property makes the Painlevé equations particularly useful in the study of non-linear systems, as it allows for the construction of exact solutions in certain cases. Another important feature of the Painlevé equations is their appearance in diverse fields such as statistical mechanics, random matrix theory and soliton theory. This has led to a wide range of applications, including the study of random processes, the dynamics of fluids and the behaviour of non-linear waves.
Źródło:
Acta Mechanica et Automatica; 2023, 17, 3; 417--422
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solutions of the nonlinear evolution problems and their applications
Autorzy:
Amir, Muhammad
Haider, Jamil Abbas
Rahman, Jamshaid Ul
Ashraf, Asifa
Powiązania:
https://bibliotekanauki.pl/articles/2233663.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
Laplace variational iteration method
nonlinear problems
duffing equation
simple pendulum
mass and spring oscillator
Simulink
Opis:
In this article, a well-known technique, the variational iterative method with the Laplace transform, is used to solve nonlinear evolution problems of a simple pendulum and mass spring oscillator, which represents the duffing equation. In the variational iteration method (VIM), finding the Lagrange multiplier is an important step, and the variational theory is often used for this purpose. This paper shows how the Laplace transform can be used to find the multiplier in a simpler way. This method gives an easy approach for scientists and engineers who deal with a wide range of nonlinear problems. Duffing equation is solved by different analytic methods, but we tackle this for the first time to solve the duffing equation and the nonlinear oscillator by using the Laplace-based VIM. In the majority of cases, Laplace variational iteration method (LVIM) just needs one iteration to attain high accuracy of the answer for linearization anddiscretization, or intensive computational work is needed. The convergence criteria of this method are efficient as compared with the VIM. Comparing the analytical VIM by Laplace transform with MATLAB’s built-in command Simulink that confirms the method’s suitability for solving nonlinear evolution problems will be helpful. In future, we will be able to find the solution of highly nonlinear oscillators.
Źródło:
Acta Mechanica et Automatica; 2023, 17, 3; 357--363
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies