Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Armakan, E." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Design and comparative strength analysis of wheel rims of a lightweight electric vehicle using Al6063 T6 and Al5083 aluminium alloys
Autorzy:
Korkut, T. B.
Armakan, E.
Ozaydin, O.
Ozdemir, K.
Goren, A.
Powiązania:
https://bibliotekanauki.pl/articles/368354.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
aluminium alloy wheel
electric vehicle
stress analysis
energy consumption
stopy aluminium
pojazd elektryczny
analiza naprężeń
zużycie energii
Opis:
Purpose: Use of aluminium alloys in critical parts of a vehicle is common since they can combine the two important properties of a material those are being strength and lightweight. The aim in this research is to guide to design process of a wheel with taking example of an electric race vehicle implementation. Design/methodology/approach: In this study, the fatigue strengths of wheels produced for a two-person racing electric vehicle (Demobil09) are evaluated by calculating maximum distortion energy criterion (Von Mises) with Finite Element Analysis. Findings: Aluminium alloy wheels are crucial safety related components and are subjected to static and dynamic loads directly. Using FEA results, the weight and equivalent stress of the wheel are both reduced. So, the energy consumption is also decreased. Modal frequencies of the wheel models are determined. Research limitations/implications: In this paper, the materials analysed are AL6063 T6 and Al5083 aluminium alloys. Different materials can be analysed in future works. Practical implications: This paper is focusing on how to reduce the energy consumption of a two-person electric vehicle concentrating on reducing the weight of vehicle wheels. The vehicle is more technological than mass production cars since it is an electric race car which uses a hub motor, the body and chassis are produced using carbon polymer composites and all electronic units are designed and produced. Although its specialities it has homologated safety equipment like seats and safety belts. Originality/value: All boundary conditions must be analysed in details and a strength analysis must be conducted during design of the wheels for different load cases to ensure the strength of a wheel while keeping the weight as low as possible. In this complex process, this paper can give some clues to designers for strengths and weights of the designs since three different wheel forms are evaluated for reducing energy consumption of the vehicle.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 99, 2; 57-63
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Chip Amount on Microstructural and Mechanical Properties of A356 Aluminum Casting Alloy
Autorzy:
Kaya, A. Y.
Özaydın, O.
Yağcı, T.
Korkmaz, A.
Armakan, E.
Çulha, O.
Powiązania:
https://bibliotekanauki.pl/articles/2079825.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
A356
gravity casting
chip melting
mechanical properties
recycling
odlewanie grawitacyjne
topienie
właściwości mechaniczne
recykling
Opis:
Aluminum casting alloys are widely used in especially automotive, aerospace, and other industrial applications due to providing desired mechanical characteristics and their high specific strength properties. Along with the increase of application areas, the importance of recycling in aluminum alloys is also increasing. The amount of energy required for producing primary ingots is about ten times the amount of energy required for the production of recycled ingots. The large energy savings achieved by using the recycled ingots results in a significant reduction in the amount of greenhouse gas released to nature compared to primary ingot production. Production can be made by adding a certain amount of recycled ingot to the primary ingot so that the desired mechanical properties remain within the boundary conditions. In this study, by using the A356 alloy and chips with five different quantities (100% primary ingots, 30% recycled ingots + 70% primary ingots, 50% recycled ingots + 50% primary ingots, 70% recycled ingots + 30% primary ingots, 100% recycled ingots), the effect on mechanical properties has been examined and the maximum amount of chips that can be used in production has been determined. T6 heat treatment was applied to the samples obtained by the gravity casting method and the mechanical properties were compared depending on the amount of chips. Besides, microstructural examinations were carried out with optical microscopy techniques. As a result, it has been observed that while producing from primary ingots, adding 30% recycled ingot to the alloy composition improves the mechanical properties of the alloy such as yield strength and tensile strength to a certain extent. However, generally a downward pattern was observed with increasing recycled ingot amount.
Źródło:
Archives of Foundry Engineering; 2021, 21, 3; 19-26
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies