Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Amiolemhen, Patrick Ejebheare" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Multiobjective optimization of multipass turning machining process using the Genetic Algorithms solution
Autorzy:
Amiolemhen, Patrick Ejebheare
Eseigbe, Joshua Ahurome
Powiązania:
https://bibliotekanauki.pl/articles/95335.pdf
Data publikacji:
2019
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
turning process
genetic algorithms
minimum production cost
minimum production time
single-objective model
multi-objective model
toczenie
proces toczenia
algorytmy genetyczne
minimalny koszt produkcji
minimalny czas produkcji
model wielokryterialny
Opis:
The study involves the development of multi-objective optimization model for turning machining process. This model was developed using a GA - based weighted-sum of minimum production cost and time criteria of multipass turning machining process subject to relevant technological/practical constraints. The results of the single-objective machining process optimization models for the multipass turning machining process when compared with those of multi-objective machining process model yielded the minimum production cost and minimum production time as $5.775 and 8.320 min respectively (and the corresponding production time and production cost as 12.996 min and $6.992, respectively), while those of the multi-objective machining process optimization model were $5.841and 9.097 min. Thus, the multi-objective machining process optimization model performed better than each of the single-objective model for the two criteria of minimum production cost and minimum production time respectively. The results also show that minimum production time model performs better than the minimum production cost model. For the example considered, the multi-objective model gave a lower production time of 30.0% than the corresponding production time obtained from the minimum production cost model, while it gave a lower production cost of 16.46% than the corresponding cost obtained by the minimum production time model.
Źródło:
Journal of Mechanical and Energy Engineering; 2019, 3, 2; 97-108
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies