Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Al Asfar, Jamil" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Enhancing the Productivity of a Roof-Type Solar Still Utilizing Alumina Nanoparticles and Vacuum Pump
Autorzy:
Mutlq, Eslam
Hamdan, Mohammad
Al Asfar, Jamil
Powiązania:
https://bibliotekanauki.pl/articles/124311.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
solar still
vacuum pump
nanoparticles
water desalination
Opis:
Unlike conventional fresh water producing systems, from saline or brackish water, the innovative solar water producing systems are efficient and effective. Experiments were conducted on two identical roof-type solar stills and simultaneously tested under the same weather conditions. One of these stills was modified by integrating a vacuum pump to lower the pressure inside while the other still was used as a reference unit. Different concentrations of Al2O3 nanoparticles were chosen, 0.2%, 0.4%, and 0.6%, and used with water inside the modified still. It was verified that the modified still, without nanoparticles, yields 34.84% more production than the conventional still. In addition, the modified still with a 0.4% of Al2O3 nanoparticles produced the highest percentage of distilled water, 44.42% in comparison to the one without the use of Al2O3 nanoparticles, followed by 37.94% and 24.07% for 0.6% and 0.2% of Al2O3 nanoparticles, respectively.
Źródło:
Journal of Ecological Engineering; 2019, 20, 4; 187-193
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of Stand-Alone Proton Exchange Membrane Fuel Cell Hybrid System under Amman Climate
Autorzy:
Nsour, Wala'
Taa'mneh, Tamara
Ayadi, Osama
Al Asfar, Jamil
Powiązania:
https://bibliotekanauki.pl/articles/123189.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
proton exchange membrane fuel cell
PEMFC
PV system
hydrogen storage
stand-alone
hybrid system
HOMER
Opis:
Renewable energy application is gaining a wide acceptance by end users; however, considering the fact that renewable energy is intermittent, variable and cannot be predicted, the need of storage systems is becoming a necessity at both micro and macro levels. Fuel cell technology is one of the most promising storage systems due to the fact that hydrogen has high energy density. This paper presents a design of stand-alone PV-PEMFC hybrid system for a small house under Amman climate. The simulation results show that the optimal size of PV array, fuel cell (PEMFC), inverter, electrolyzer (ELE) and H2 Tank capacity were 10 kW, 1 kW, 5 kW, 6 kW, and 5 kg respectively. Hydrogen proved itself as a low carbon energy source, which is environmental friendly and characterized with high energy content per unit mass. Due to fuel cells technology, hydrogen can be used for inter-season storage.
Źródło:
Journal of Ecological Engineering; 2019, 20, 9; 1-10
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wastewater Treatment Using Activated Carbon Produced from Oil Shale
Autorzy:
Hamdan, Mohmmad Ahmad
Sublaban, Esraa Taha
Al-Asfar, Jamil Jawdat
Banisaid, Mai Abdullah
Powiązania:
https://bibliotekanauki.pl/articles/2202355.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
activated carbon
wastewater treatment
removing
heavy metal
water
Opis:
In recent years, many researchers have expressed interest in wastewater treatment using activated carbon produced from cheap raw materials. In this work, an activated carbo-aluminosilicate (ACS) – supported zero-valent iron (ZVI) composite was produced from Um AL-Rasa oil shale mine and examined to eliminate Chromium (VI) from contaminated water. Activation of raw oil shale fine particles (< 212 μm) was chemically performed using 95 and 5% wt of H2SO4 and HNO3, respectively, as activating agents. The activated material was further treated with caustic soda, named ACS, and modified with fine zero-valent iron particles < 212 μm), called ZVI/ACS composite. Kaolin was added to the composite with the ratio: (50 % wt. light kaolin: 50 % wt. ACS), named as ZVI/ACS/K. The XRD analysis for both composites confirmed iron dispersion at 45°. Adsorption experiments were carried out using the two adsorbents ZVI/ACS & ZVI/ACS/K under different values of pH, and adsorbent dosage. The results indicated that the reduction of Chromium was maximum under the 3 pH value and 2.0 gm amount of ZVI/ACS/K. Furthermore, it was found the removal rate was enhanced by 17% and 24.7% when ZVI/ACS & ZVI/ACS/K adsorbents were used, respectively, compared to that when only ACS adsorbent was used alone. Finally, the dependency of Chromium removal on its initial concentration by ZVI/ACS/K adsorbent was also investigated at two different temperatures of 27° and 50°. The results indicated a decrease in the removal rate of the Chromium as the concentration increased at 27°; however, the removal rate previously enhanced at 50° at all initial concentrations.
Źródło:
Journal of Ecological Engineering; 2023, 24, 2; 131--139
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Techno-economic Assessment of Retrofitting Heating, Ventilation, and Air Conditioning System – Case Study
Autorzy:
Alsalem, Yazan
Ayadi, Osama
Asfar, Jamil Al
Powiązania:
https://bibliotekanauki.pl/articles/24201603.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
retrofitting HVAC
boiler system
LCCA
life cycle cost analysis
GHG emissions
greenhouse gas emissions
VRF system
variable refrigerant flow
energy audit
Opis:
Retrofitting heating, ventilation, and air conditioning (HVAC) systems in existing buildings and applying energy-efficient technologies can significantly reduce energy consumption and greenhouse gases emissions. In this work, two options of HVAC retrofitting were proposed and discussed for the existing heating system of school of engineering at the University of Jordan as a case study. The experimental tests showed that only one of the three diesel boilers work normally while the other two boilers are not efficient, with actual efficiency of 25%. The first retrofitting was to upgrade the existing heating system to a liquefied petroleum gas (LPG) boiler system with estimated annual saving of 29,757 Jordanian dinar (JOD), and a payback period of 3.9 years. The second option for retrofitting was a new HVAC system for the building including heating and air conditioning with a variable refrigerant flow (VRF) system and heat pump chiller. The estimated cost showed that the VRF system was the lowest one in running cost in winter. The diesel boilers had the highest greenhouse gas emissions with an average value of 377.3 tons of CO2 per year, while LPG boilers achieved the second highest emissions of around 279 tons of CO2 per year, whereas the heat pump chiller in winter produced 199 tons of CO2 and the VRF system emitted 180 tons in winter. The LCCA economic analysis was performed for the proposed systems, showing that the LPG boilers system was more feasible than the diesel boilers system, while the VRF system was more feasible than the heat pump chiller system.
Źródło:
Journal of Ecological Engineering; 2023, 24, 3; 153--168
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies