Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Agrawal, Akhileshwar Prasad" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Feature optimization using a two-tier hybrid optimizer in an Internet of Things network
Autorzy:
Agrawal, Akhileshwar Prasad
Singh, Nanhay
Powiązania:
https://bibliotekanauki.pl/articles/15548024.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
IoT
Internet of Things
anomaly mitigation
GWO
Gray Wolf Optimizer
feature optimization
PSO
particle swarm optimizer
Internet Rzeczy
optymalizacja funkcji
Opis:
The growing use of the Internet of Things (IoT) in smart applications necessitates improved security monitoring of IoT components. The security of such components is monitored using intrusion detection systems which run machine learning (ML) algorithms to classify access attempts as anomalous or normal. However, in this case, one of the issues is the large length of the data feature vector that any ML or deep learning technique implemented on resource-constrained intelligent nodes must handle. In this paper, the problem of selecting an optimal-feature set is investigated to reduce the curse of data dimensionality. A two-layered approach is proposed: the first tier makes use of a random forest while the second tier uses a hybrid of gray wolf optimizer (GWO) and the particle swarm optimizer (PSO) with the k-nearest neighbor as the wrapper method. Further, differential weight distribution is made to the local-best and global-best positions in the velocity equation of PSO. A new metric, i.e., the reduced feature to accuracy ratio (RFAR), is introduced for comparing various works. Three data sets, namely, NSLKDD, DS2OS and BoTIoT, are used to evaluate and validate the proposed work. Experiments demonstrate improvements in accuracy up to 99.44%, 99.44% and 99.98% with the length of the optimal-feature vector equal to 9, 4 and 8 for the NSLKDD, DS2OS and BoTIoT data sets, respectively. Furthermore, classification improves for many of the individual classes of attacks: denial-of-service (DoS) (99.75%) and normal (99.52%) for NSLKDD, malicious control (100%) and DoS (68.69%) for DS2OS, and theft (95.65%) for BoTIoT.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 2; 313--326
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Double Layered Priority based Gray Wolf Algorithm (PrGWO-SK) for safety management in IoT network through anomaly detection
Autorzy:
Agrawal, Akhileshwar Prasad
Singh, Nanhay
Powiązania:
https://bibliotekanauki.pl/articles/2200943.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
Gray Wolf Optimizer
anomaly detection
feature selection
predictive maintenance
Opis:
For mitigating and managing risk failures due to Internet of Things (IoT) attacks, many Machine Learning (ML) and Deep Learning (DL) solutions have been used to detect attacks but mostly suffer from the problem of high dimensionality. The problem is even more acute for resource starved IoT nodes to work with high dimension data. Motivated by this problem, in the present work a priority based Gray Wolf Optimizer is proposed for effectively reducing the input feature vector of the dataset. At each iteration all the wolves leverage the relative importance of their leader wolves’ position vector for updating their own positions. Also, a new inclusive fitness function is hereby proposed which incorporates all the important quality metrics along with the accuracy measure. In a first, SVM is used to initialize the proposed PrGWO population and kNN is used as the fitness wrapper technique. The proposed approach is tested on NSL-KDD, DS2OS and BoTIoT datasets and the best accuracies are found to be 99.60%, 99.71% and 99.97% with number of features as 12,6 and 9 respectively which are better than most of the existing algorithms.
Źródło:
Eksploatacja i Niezawodność; 2022, 24, 4; 641--654
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies