Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Abrishami, Gholamreza" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
On Independent Domination in Planar Cubic Graphs
Autorzy:
Abrishami, Gholamreza
Henning, Michael A.
Rahbarnia, Freydoon
Powiązania:
https://bibliotekanauki.pl/articles/31343229.pdf
Data publikacji:
2019-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
independent domination number
domination number
cubic graphs
Opis:
A set $S$ of vertices in a graph $G$ is an independent dominating set of $G$ if $S$ is an independent set and every vertex not in $S$ is adjacent to a vertex in $S$. The independent domination number, $i(G)$, of $G$ is the minimum cardinality of an independent dominating set. Goddard and Henning [Discrete Math. 313 (2013) 839–854] posed the conjecture that if \( G \not\in \{ K_{3,3}, C_5 \square K_2 \} \) is a connected, cubic graph on $n$ vertices, then $i(G) \le 3/8 n $, where $ C_5 \square K_2 $ is the 5-prism. As an application of known result, we observe that this conjecture is true when $G$ is 2-connected and planar, and we provide an infinite family of such graphs that achieve the bound. We conjecture that if $G$ is a bipartite, planar, cubic graph of order $n$, then $ i(G) \le 1/3 n $, and we provide an infinite family of such graphs that achieve this bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 841-853
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies