Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Špacapan, Simon" wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
On 3-Colorings of Direct Products of Graphs
Autorzy:
Špacapan, Simon
Powiązania:
https://bibliotekanauki.pl/articles/31343446.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
independence number
direct product
Hedetniemi’s conjecture
Opis:
The k-independence number of a graph G, denoted as αk(G), is the order of a largest induced k-colorable subgraph of G. In [S. Špacapan, The k-independence number of direct products of graphs, European J. Combin. 32 (2011) 1377–1383] the author conjectured that the direct product G × H of graphs G and H obeys the following bound αk(G×H)≤αk(G)|V(H)|+αk(H)|V(G)|−αk(G)αk(H), and proved the conjecture for k = 1 and k = 2. If true for k = 3 the conjecture strenghtens the result of El-Zahar and Sauer who proved that any direct product of 4-chromatic graphs is 4-chromatic [M. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121–126]. In this paper we prove that the above bound is true for k = 3 provided that G and H are graphs that have complete tripartite subgraphs of orders α3(G) and α3(H), respectively.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 391-413
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On acyclic colorings of direct products
Autorzy:
Špacapan, Simon
Horvat, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/743326.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
coloring
acyclic coloring
distance-two coloring
direct product
Opis:
A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T₁ and T₂ equals min{Δ(T₁) + 1, Δ(T₂) + 1}. We also prove that the acyclic chromatic number of direct product of two complete graphs Kₘ and Kₙ is mn-m-2, where m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised.
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 2; 323-333
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Edge-connectivity of strong products of graphs
Autorzy:
Bresar, Bostjan
Spacapan, Simon
Powiązania:
https://bibliotekanauki.pl/articles/743791.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
connectivity
strong product
graph product
separating set
Opis:
The strong product G₁ ⊠ G₂ of graphs G₁ and G₂ is the graph with V(G₁)×V(G₂) as the vertex set, and two distinct vertices (x₁,x₂) and (y₁,y₂) are adjacent whenever for each i ∈ {1,2} either $x_i = y_i$ or $x_i y_i ∈ E(G_i)$. In this note we show that for two connected graphs G₁ and G₂ the edge-connectivity λ (G₁ ⊠ G₂) equals min{δ(G₁ ⊠ G₂), λ(G₁)(|V(G₂)| + 2|E(G₂)|), λ(G₂)(|V(G₁)| + 2|E(G₁)|)}. In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 2; 333-343
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs
Autorzy:
Paj, Tjaša
Špacapan, Simon
Powiązania:
https://bibliotekanauki.pl/articles/31339257.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
direct product
independent set
Opis:
The direct product of graphs G = (V (G), E(G)) and H = (V (H), E(H)) is the graph, denoted as G×H, with vertex set V (G×H) = V (G)×V (H), where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G) and y1y2 ∈ E(H). Let n be odd and m even. We prove that every maximum independent set in Pn×G, respectively Cm×G, is of the form (A×C)∪(B×D), where C and D are nonadjacent in G, and A∪B is the bipartition of Pn respectively Cm. We also give a characterization of maximum independent subsets of Pn × G for every even n and discuss the structure of maximum independent sets in T × G where T is a tree.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 675-688
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Separation of Cartesian Products of Graphs Into Several Connected Components by the Removal of Vertices
Autorzy:
Erker, Tjaša Paj
Špacapan, Simon
Powiązania:
https://bibliotekanauki.pl/articles/32304144.pdf
Data publikacji:
2022-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k -connectivity
Cartesian product
Opis:
A set S ⊆ V (G) is a vertex k-cut in a graph G = (V (G), E(G)) if G − S has at least k connected components. The k-connectivity of G, denoted as κk(G), is the minimum cardinality of a vertex k-cut in G. We give several constructions of a set S such that (G□H) − S has at least three connected components. Then we prove that for any 2-connected graphs G and H, of order at least six, one of the defined sets S is a minimum vertex 3-cut in G□H. This yields a formula for κ3(G□H).
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 905-920
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some results on total domination in direct products of graphs
Autorzy:
Dorbec, Paul
Gravier, Sylvain
Klavžar, Sandi
Spacapan, Simon
Powiązania:
https://bibliotekanauki.pl/articles/743885.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
direct product
total domination
k-tuple domination
open packing
domination
Opis:
Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the {2}-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The domination number of direct products of graphs is also bounded from below.
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 1; 103-112
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies