Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ślosarczyk, Agnieszka" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Effects of different grain size of expanded perlite aggregate and content of silica aerogel on the characteristics of lightweight cementitious composite
Autorzy:
Vashchuk, Andrii
Ślosarczyk, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/24085741.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
lightweight composite
expanded perlite aggregate
silica aerogel
mechanical characteristic
thermal conductivity coefficient
scanning electron microscopy
Opis:
In this research, an attempt was made to investigate effects of expanded perlite aggregate grain size on consistency, density, compressive strength, thermal conductivity and microstructure of 15 different composite mixes with silica aerogel. As for the samples preparation, expanded perlite aggregate of 5 different groups based on grain size, were used for sample preparation, then partially replaced by volume for 20% and 40% of hydrophobic silica aerogel particles. The results showed, that density of the samples varied between 0.35 g/cm3 and 1.5 g/cm3, flexural strength varied between 3.4 MPa and 7.4 MPa, compressive strength was in the range between 12.3 MPa and 55 MPa, thermal conductivity coefficient was in the range between 0.130 W/mK and 0.190 W/mK. Scanning electron microscopy showed that expanded perlite aggregates and silica aerogel particles are capable of being mixed and formed homogenous mixture. Nevertheless, microscope images indicated weaker adhesion of silica aerogel particles at interfacial zone as compared with expanded perlite aggregate particles. Results revealed, that both of the factors: grain size of expanded perlite aggregate particles silica aerogel content influenced the density, compressive strength and thermal conductivity. The study also indicated feasibility of expanded perlite aggregate and silica aerogel for achieving homogeneous mixture of the lightweight cementitious composites. Study demonstrated that using different size fractions of expanded perlite aggregate affects differently physical, mechanical and thermal characteristics of the lightweight cementitious composite with silica aerogel.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 4; art. no. 174338
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of nanosilica and binary oxide systems on the selected physical and mechanical properties of cement composites
Autorzy:
Ślosarczyk, Agnieszka
Klapiszewska, Izabela
Klapiszewski, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/2146944.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cement composites
nanosilica
binary oxides
Opis:
The paper presents the results of physical and mechanical tests of cement composites that include small amounts of nanosilica, as well as systems of nanosilica with less commonly used iron and nickel nanooxides. In the work, a physicochemical analysis of the nanooxides was performed to compare their morphological and structural properties, to determine their temperature stability and to assess their behavior in the cement matrix environment. Particle distribution analysis indicated a tendency for nanooxide particles to aggregate and agglomerate, with nickel nanooxide showing the highest degree of homogeneity. For iron nanooxide, the largest size scatter and the largest particle aggregates were observed. As expected, the nanosilica displayed the highest specific surface area, whereas, both nickel and iron nanooxide exhibited higher electrokinetic and temperature stability compared to nanosilica, which guarantees their durability in high pH cement matrixes. Cement composites with oxide additions had slightly lower density and comparable absorbability after 28 days of curing, as compared to pure mortar. In the case of nanosilica, after 7 days of curing, a significant increase in compressive strength was observed in comparison with pure mortar, while the strengths were slightly lower at a later time. Synergistic application of nanosilica with nickel or iron nanooxide resulted in significant increases in strength after 28 and 90 days of curing, where the effect of nanosilica alone was not as spectacular.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 2; art. no. 144184
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Production of cement composites using alumina-lignin hybrid materials admixture
Autorzy:
Klapiszewska, Izabela
Ślosarczyk, Agnieszka
Klapiszewski, Łukasz
Jesionowski, Teofil
Powiązania:
https://bibliotekanauki.pl/articles/110198.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
alumina
lignin
hybrid materials
cement composites
Opis:
In the framework of this study, Al2O3-lignin hybrid materials differing in terms of the weight ratio of the inorganic and organic components were designed and obtained. The method of mechanical grinding of ingredients with simultaneous mixing using a mortar grinder and a high-performance ball mill was used in order to obtain the above-mentioned systems. The effectiveness of obtaining alumina- lignin materials was confirmed using Fourier transform infrared spectroscopy (FTIR) and, indirectly, by the colorimetric analysis. FTIR analysis allowed to confirm that hydrogen bonds formed between the components and classify the resulting systems as Ist class hybrid materials. In the course of the conducted research, the relatively high thermal stability of the hybrid materials was also confirmed and the dispersion and morphological character (SEM) of the obtained systems was determined. Favourable physicochemical and microstructural evaluation allowed to qualify the alumina-lignin hybrid systems as functional admixtures for cement mortars. As part of the tests, it was confirmed that the presence of lignin in the cement composites contributes to the increase of the plasticity of the mixture. In turn, the inorganic component allowed to preserve (and, in case of selected systems, improve) the mechanical properties of the final composites. The most favourable results of application tests were obtained for alumina-lignin hybrid systems with a weight ratios equal to 5:1 and 2:1. The analysis of these systems indicated that there is a clear improvement of mechanical properties, whit a simultaneous enhancement of the plasticity of the mixture in comparison to the reference sample.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 6; 1401-1412
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Statistical approach to the production of cement composites doped with ZnO and ZnO-based materials
Autorzy:
Klapiszewska, Izabela
Balicki, Sebastian
Wilk, Kazimiera A.
Klapiszewski, Łukasz
Ślosarczyk, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/24085675.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cement composite
zinc oxide
hybrid materials
design of experiments
Opis:
In this study, physical and functional properties of the cement composites containing ZnO, ZnO/lignin and lignin admixtures were investigated using Response Surface Methodology (RSM). The I-optimal design based on RSM was used to assess the influence of ZnO-based doping agent, of either commercial or synthetic origin, on cement composite production in the function of average compressive strength and cost. Polynomial mathematical models were developed by RSM confronting results from the experimental design. The accuracy and precision of the utilized models established by I-optimal design were tested using Analysis of Variance (ANOVA). The first stage of formulation optimization revealed that the use of commercially available ZnO-based admixture no. 4 (ZnO-SA, supplied by Sigma Aldrich) allowed to achieve the desired results, passing all the requirements, i.e., the best microbial purity combined with reasonable cost, followed by satisfactory physical properties. In the second stage of formulation optimization, the influence of implementing the hybrid materials, i.e., ZnO-SA mixed in different proportions with lignin was evaluated. RSM revealed that doping admixture no. 3, i.e., ZnO-SA/lignin (5:1), is the best candidate, which comprised augmented functional and physical properties of the fabricated cement composite. This component exhibited the best microbial purity as well as the lowest total pore volume, followed by satisfactory physical properties. Verification of the model findings indicated considerable agreement between the predicted and experimental values. From the findings, it was confirmed that a reasonable cost-performance balance for cement composites can be achieved using ZnO-SA and ZnO-SA/lignin (5:1).
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 4; art. no. 168352
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zinc oxide as a functional admixture to cement composites
Autorzy:
Klapiszewska, Izabela
Ławniczak, Łukasz
Parus, Anna
Jesionowski, Teofil
Klapiszewski, Łukasz
Ślosarczyk, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/2146946.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
zinc oxide
admixtures
cement composites
antimicrobial tests
Opis:
There is an increasing trend in the modern construction industry to use nanomaterials, which allow to improve the performance of construction materials on the one hand, and to shape new properties on the other. This study presents the results of physicomechanical and antibacterial tests for cement composites modified with zinc nanooxide. The main aim of this study was to compare the structural and morphological properties of three selected commercial zinc nanooxides and to determine the influence of the above mentioned nanooxides on the physicomechanical properties of cement composites and the ability to inhibit the activity of gram-positive and gram-negative bacteria as well as fungi. It was shown that commercial nanooxides can significantly differ in terms of physicochemical properties, which depend on their production method. Two of them were characterized by high specific surface areas, which in turn translated into rheological properties of cement mortars. Nanooxides with higher specific surface areas tend to reduce the plasticity of the mortars. According to the literature data, all nanooxides caused a delay in cement binder setting by more than 100%. This resulted in a reduction of the early one-day flexural and compressive strength of the composite. In the later curing period, especially after 7 days of hardening, a significant acceleration of the hydration process was observed in composites with the addition of all nanooxides, which was confirmed by significant increases in mechanical parameters. Nevertheless, the tested nanooxides showed different sensitivity towards microorganisms, which was influenced by both the type of nanooxide and bacteria.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 2; art. no. 145565
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies