Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Álvarez-Aramberri, J." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
An agent-oriented hierarchic strategy for solving inverse problems
Autorzy:
Smołka, M.
Schaefer, R.
Paszyński, M.
Pardo, D.
Álvarez-Aramberri, J.
Powiązania:
https://bibliotekanauki.pl/articles/329764.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
inverse problem
hybrid optimization method
memetic algorithm
multi-agent system
magnetotelluric data inversion
zadanie odwrotne
optymalizacja hybrydowa
algorytm memetyczny
system wieloagentowy
Opis:
The paper discusses the complex, agent-oriented hierarchic memetic strategy (HMS) dedicated to solving inverse parametric problems. The strategy goes beyond the idea of two-phase global optimization algorithms. The global search performed by a tree of dependent demes is dynamically alternated with local, steepest descent searches. The strategy offers exceptionally low computational costs, mainly because the direct solver accuracy (performed by the hp-adaptive finite element method) is dynamically adjusted for each inverse search step. The computational cost is further decreased by the strategy employed for solution inter-processing and fitness deterioration. The HMS efficiency is compared with the results of a standard evolutionary technique, as well as with the multi-start strategy on benchmarks that exhibit typical inverse problems’ difficulties. Finally, an HMS application to a real-life engineering problem leading to the identification of oil deposits by inverting magnetotelluric measurements is presented. The HMS applicability to the inversion of magnetotelluric data is also mathematically verified.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 3; 483-498
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies