- Tytuł:
- A distributed big data analytics model for traffic accidents classification and recognition based on SparkMlLib cores
- Autorzy:
-
Mallahi, Imad El
Riffi, Jamal
Tairi, Hamid
Ez-Zahout, Abderrahmane
Mahraz, Mohamed Adnane - Powiązania:
- https://bibliotekanauki.pl/articles/27314355.pdf
- Data publikacji:
- 2022
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
- Tematy:
-
big data
machine learning
traffic accident
severity prediction
convolutional neural network - Opis:
- This paper focuses on the issue of big data analytics for traffic accident prediction based on SparkMllib cores; however, Spark’s Machine Learning Pipelines provide a helpful and suitable API that helps to create and tune classification and prediction models to decision-making concerning traffic accidents. Data scientists have recently focused on classification and prediction techniques for traffic accidents; data analytics techniques for feature extraction have also continued to evolve. Analysis of a huge volume of received data requires considerable processing time. Practically, the implementation of such processes in real-time systems requires a high computation speed. Processing speed plays an important role in traffic accident recognition in real-time systems. It requires the use of modern technologies and fast algorithms that increase the acceleration in extracting the feature parameters from traffic accidents. Problems with overclocking during the digital processing of traffic accidents have yet to be completely resolved. Our proposed model is based on advanced processing by the Spark MlLib core. We call on the real-time data streaming API on spark to continuously gather real-time data from multiple external data sources in the form of data streams. Secondly, the data streams are treated as unbound tables. After this, we call the random forest algorithm continuously to extract the feature parameters from a traffic accident. The use of this proposed method makes it possible to increase the speed factor on processors. Experiment results showed that the proposed method successfully extracts the accident features and achieves a seamless classification performance compared to other conventional traffic accident recognition algorithms. Finally, we share all detected accidents with details onto online applications with other users.
- Źródło:
-
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 4; 62--71
1897-8649
2080-2145 - Pojawia się w:
- Journal of Automation Mobile Robotics and Intelligent Systems
- Dostawca treści:
- Biblioteka Nauki